
www.manaraa.com

Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2012-03-02 

Analysis and Characterization of Author Contribution Patterns in Analysis and Characterization of Author Contribution Patterns in 

Open Source Software Development Open Source Software Development 

Quinn Carlson Taylor 
Brigham Young University - Provo 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Computer Sciences Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Taylor, Quinn Carlson, "Analysis and Characterization of Author Contribution Patterns in Open Source 
Software Development" (2012). Theses and Dissertations. 2971. 
https://scholarsarchive.byu.edu/etd/2971 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F2971&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2971?utm_source=scholarsarchive.byu.edu%2Fetd%2F2971&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


www.manaraa.com

Analysis and Characterization of Author Contribution Patterns in

Open Source Software Development

Quinn C. Taylor

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Charles D. Knutson, Chair
Daniel Zappala
Bryan S. Morse

Department of Computer Science

Brigham Young University

April 2012

Copyright c© 2012 Quinn C. Taylor

All Rights Reserved



www.manaraa.com

ABSTRACT

Analysis and Characterization of Author Contribution Patterns in
Open Source Software Development

Quinn C. Taylor
Department of Computer Science, BYU

Master of Science

Software development is a process fraught with unpredictability, in part because
software is created by people. Human interactions add complexity to development processes,
and collaborative development can become a liability if not properly understood and managed.
Recent years have seen an increase in the use of data mining techniques on publicly-available
repository data with the goal of improving software development processes, and by extension,
software quality. In this thesis, we introduce the concept of author entropy as a metric for
quantifying interaction and collaboration (both within individual files and across projects),
present results from two empirical observational studies of open-source projects, identify and
analyze authorship and collaboration patterns within source code, demonstrate techniques
for visualizing authorship patterns, and propose avenues for further research.

Keywords: software engineering, open source, data mining, collaboration, authorship patterns,
author entropy, SourceForge, Subversion, Eclipse, Git



www.manaraa.com

Contents

List of Figures vi

1 Introduction 1

2 Applications of Data Mining in Software Engineering 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Software Engineering Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Mining Software Engineering Data: A Brief Survey . . . . . . . . . . . . . . 10

2.4.1 Data Mining Techniques in Software Engineering . . . . . . . . . . . 10

2.4.1.1 Association Rules and Frequent Patterns . . . . . . . . . . . 10

2.4.1.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1.4 Text Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Software Engineering Tasks That Benefit From Data Mining . . . . . 16

2.4.2.1 Development Tasks . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2.2 Management Tasks . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2.3 Research Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Mining Software Engineering Data: The Road from Here . . . . . . . . . . . 20

2.5.1 Targeting Software Tasks Intelligently . . . . . . . . . . . . . . . . . . 21

2.5.2 Lowering the Barrier of Entry . . . . . . . . . . . . . . . . . . . . . . 22

2.5.3 A Word of Caution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iii



www.manaraa.com

3 Author Entropy: A Metric for Characterization of Software Authorship

Patterns 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Author Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Definitions of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Calculating Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2.1 The Special Case: Binary Classification . . . . . . . . . . . 27

3.2.2.2 The General Case: Any Number of Groups . . . . . . . . . 28

3.2.2.3 Entropy Applied to Text Authorship . . . . . . . . . . . . . 29

3.2.3 Interpretation of Entropy in Software . . . . . . . . . . . . . . . . . . 29

3.3 Proof of Concept Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Extraction and Calculation . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Project Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.4.1 Degree of Collaboration Within Files . . . . . . . . . . . . . 32

3.3.4.2 Entropy Patterns Within Files . . . . . . . . . . . . . . . . 33

3.3.4.3 Entropy Distributions Within Projects . . . . . . . . . . . . 35

3.3.4.4 Entropy Distributions Across Projects . . . . . . . . . . . . 36

3.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Empirical Evaluation of Applicability . . . . . . . . . . . . . . . . . . 38

3.5.2 Aggregating Entropy for Groups of Files . . . . . . . . . . . . . . . . 38

3.5.3 Normalizing Author Entropy . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.4 Parallels with Social Network Studies . . . . . . . . . . . . . . . . . . 40

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iv



www.manaraa.com

4 An Analysis of Author Contribution Patterns in Eclipse Foundation Project

Source Code 44

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Project and File Selection . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Extraction and Calculation . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.3 Limitations of the Data . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Author Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Calculating Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Normalizing Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Interpreting Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.1 Additional Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

References 60

v



www.manaraa.com

List of Figures

3.1 Entropy of a Bernoulli distribution. . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Maximum possible entropy for a system S as a discrete function of the total

number of groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Counts of file revisions and unique files plotted against number of authors. . 33

3.4 Data for 15 revisions of BookmarksHelper.java in S3B. The x axis shows

consecutive revisions; actual time periods between revisions is not represented

here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Excerpts of entropy distributions for several projects, excluding zero-entropy

values. The darkness of each (x, y) point represents the percentage of files at

revision x that map to normalized entropy y. These plots have 20 bins over the

range of entropy values and have been contrast-adjusted for better readability. 35

3.6 Plots of entropy distributions for 28,955 files from 33 open-source projects. . 43

4.1 Frequency of file sizes (in number of lines). . . . . . . . . . . . . . . . . . . . 52

4.2 Frequency of number of authors contributing to a given file. . . . . . . . . . 52

4.3 Author count vs. file size (in number of lines). . . . . . . . . . . . . . . . . . 53

4.4 Line count vs. percent written by dominant author for files with 2+ authors. 54

4.5 Author count vs. author dominance. Circles represent the curve 1
x
. . . . . . 54

4.6 Author count vs. total number of lines for all 592 projects. . . . . . . . . . . 55

4.7 Author count vs. (a) entropy and (b) normalized entropy. . . . . . . . . . . . 56

4.8 Normalized entropy vs. line count for (a) two authors and (b) all files. . . . . 57

4.9 Height map of line count vs. normalized entropy (same data as Figure 4.8b). 58

vi

https://s3b.svn.sourceforge.net/svnroot/s3b/trunk/sscf/src/org/corrib/s3b/sscf/manage/BookmarksHelper.java
https://s3b.sourceforge.net/


www.manaraa.com

Chapter 1

Introduction

Software is created by humans. This obvious truth is the core reason that software

engineering is such an imprecise and nebulous activity, for practitioners and researchers alike.

It stands in stark contrast with the deterministic nature of computers, which bring software

to life by following instructions with unwavering exactness. Although computer science is

a “hard science” ruled by theory and certainty, software development is decidedly a “soft

science” with strong dependencies on human behavior and social structures. As an example,

one need look no further than Conway’s Law [Conway, 1968] to see such principles at play.

Despite more than 40 years of history and collective experience, software engineering is,

on average, still mired in mediocrity. Few people can explain why some projects flourish and

others fail. Fewer still can accurately predict timelines, completeness, or quality. Even with

improved tools, languages, and methodologies freely available to all, there are still fabulous

successes and shocking failures. Fred Brooks’ observation, made 25 years ago, is as true as

ever: “The gap between the best software engineering practice and the average practice is

very wide—perhaps wider than in any other engineering discipline.” [Brooks, 1987]

The “practice” Brooks refers to consists largely of software development processes.

Since software is developed by multiple people within the context of social structures, successful

processes must consider human tendencies. People-oriented software development is an old

concept, pioneered in The Psychology of Computer Programming [Weinberg, 1971]; recently

it has been called the most important key to successful software projects [McConnell, 2009].

1



www.manaraa.com

Software engineering research has traditionally focused on solutions derived from

“hard” data, such as source code analysis, defect identification and triage, static and dynamic

testing, verification, etc. However, in the past few years there has been an increased focus on

understanding and improving how software (and particularly its cost and quality) is shaped

by humans and social behaviors. This shift is driven in part by the increase in public data

made available by the proliferation of open source communities. The resulting abundance of

software artifacts (including source code, defect records, mailing list communications, etc.)

has removed many barriers that previously made large-scale analysis of multiple projects

unfeasible for most researchers.

In recent years, a new research community focused on data mining and analysis of

open source software has sprung up. Since 2004, the International Conference on Software

Engineering (ICSE) has held a Working Conference on Mining Software Repositories (MSR).

The original call for papers stated that MSR’s purpose was “to use data stored in software

repositories to further understanding of software development practices ... [and enable

repositories to be] used by researchers to gain empirically based understanding of software

development, and by software practitioners to predict and plan various aspects of their

project” [Hassan et al., 2004]. Several other venues, including the International Conference

on Open Source Systems (OSS, since 2005), the Workshop on Public Data about Software

Development (WoPDaSD, 2006–2010, subsequently subsumed by OSS), and the International

Workshop on Emerging Trends in FLOSS Research (FLOSS, 2007 and 2010) have also played

an important role in shaping and advancing this new research domain.

The BYU SEQuOIA1 lab, established in 2006 by Dr. Charles Knutson, is deeply

involved in this research community. Our goal is to extract and distill insights about software

development processes, and ultimately better understand the nature of organizations that

produce truly exceptional software. Repository data is a critical piece of this puzzle which

1Software Engineering Quality: Observation, Insight, and Analysis — http://sequoia.cs.byu.edu

2

http://sequoia.cs.byu.edu


www.manaraa.com

can provide a wealth of information about the software itself, the organization that built it,

and the development processes used.

When we began research in this space, our first efforts were focused on discovery and

evaluation of previous related work. Researchers have examined repository data in a variety

of ways, many of them involving data mining in some capacity. We compiled our findings in a

paper about data mining applications in software engineering. Chapter 2 is the full version of

this paper, which was subsequently published in the International Journal of Data Analysis

Techniques and Strategies as “Applications of Data Mining in Software Engineering” [Taylor

et al., 2010]. This paper has two major parts: a survey of the ways in which data mining

techniques are (or have been) used in the field of software engineering, and an articulation of

the ways in which data mining can be effectively leveraged to make significant contributions

to understanding and improving software development efforts.

Very few of the repository mining tools we identified supported either numerical or

visual analysis of author collaboration patterns, and those that did (see Section 3.4) were

fairly limited in their approach. However, human-centric data is a critical part of accurately

understanding software development processes. In addition, our lab’s research is also shaped

by three closely related ideas: 1) “software is not a product, but rather a medium for the

storage of knowledge” [Armour, 2000b]; 2) “the product is the knowledge that goes into

the software” [Armour, 2000a]; and 3) “software development is not a product-producing

activity—it is a knowledge-acquiring activity” [Armour, 2000a]. Software artifacts and

repository data, then, can be viewed as byproducts of knowledge acquisition, and hence as

artifacts of an intrinsically human activity.

Studying how people contribute knowledge to software (and manipulate it thereafter)

can improve our understanding of how the knowledge stored in software artifacts appears

and evolves. However, it is non-trivial to measure or quantify software-borne knowledge,

and virtually impossible to determine who “knows” what. Software repositories do allow

3



www.manaraa.com

us to determine who contributed what, but in its raw form, this information is difficult to

understand or correlate with other data.

Our solution is to create a new metric called author entropy, which blends concepts

drawn from machine learning and data mining. This metric enables us to characterize the

degree of collaboration between multiple authors. We performed a proof-of-concept study (on

28,955 files from 33 projects) which used author attribution data mined from SourceForge

repositories to analyze authorship patterns over time. We observed an exponential decay in the

number of files with a given number of authors as well as several recurrent patterns. Chapter 3

was published and presented at the 3rd International Workshop on Public Data about Software

Development as “Author Entropy: A Metric for Characterization of Software Authorship

Patterns” [Taylor et al., 2008]. This paper contributed directly to related SEQuOIA lab

publications, which both expanded on this metric [Casebolt et al., 2009] and derived a related

metric called language entropy, or the “distribution of an individual’s development efforts

across multiple programming languages” [Krein et al., 2009, 2010, MacLean et al., 2010].

This foundational research led to additional questions related to author contribution

patterns, such as the relationships between collaboration activity and file size, author count,

and project size. We performed a larger-scale study (on 251,633 files from 592 projects) to

answer these questions, as well as to replicate our earlier work on author entropy. This study

both revisited author entropy and added detailed statistical analysis of file sizes, collaboration

within files and projects, and common authorship patterns. Chapter 4 contains the results of

this research, published and presented at the 7th International Conference on Open Source

Systems as “An Analysis of Author Contribution Patterns in Eclipse Foundation Project

Source Code” [Taylor et al., 2011].

Key findings from this second paper include: 1) an approximately normal distribution

of file sizes; 2) an exponential (log-linear) decay in the frequency of files with n authors; 3) a

positive correlation between file size and number of authors; 4) a majority of source files that

have a clearly dominant author who controls most of the file; and 5) a disproportionate number

4



www.manaraa.com

of files which have only two authors, one of whom contributed only 1 or 2 of the lines. Some

of these results were in line with our expectations, and others suggest potentially interesting

new patterns we had not previously considered. As researchers, we seek to understand how

people work together to develop complex systems, and to explain success or failure based on

the data at our disposal. The results of these studies have suggested several new avenues of

research which can help enhance our understanding.

The work contained in this thesis addresses an important aspect of software engineering,

for both researchers and practitioners: leveraging software authorship data to learn from

and improve software processes. We identify promising veins of future research, particularly

opportunities for correlating authorship patterns (including author entropy) with other

measurements of code ownership, analyses of quality, etc. We believe that future research,

building on the findings presented here, has the potential to enhance our collective ability to

understand and account for human factors that affect software development, and in turn,

raise software quality and lower costs.

5



www.manaraa.com

Chapter 2

Applications of Data Mining in Software Engineering

2.1 Introduction

Software systems are inherently complex and difficult to conceptualize. This complexity,

compounded by intricate dependencies and disparate programming paradigms, slows develop-

ment and maintenance activities, leads to faults and defects, and ultimately increases the

cost of software. Most software development organizations develop some sort of processes

to manage software development activities. However, as in most other areas of business,

software processes are often based only on hunches or anecdotal experience, rather than on

empirical data.

Consequently, many organizations are “flying blind” without fully understanding the

impact of their process on the quality of the software that they produce. This is generally

not due to apathy about quality, but rather to the difficulty inherent in discovery and

measurement. Software quality is not simply a function of lines of code, bug count, number

of developers, man-hours, money, or previous experience—although it involves all those

things—and it is never the same for any two organizations.

Software metrics have long been a standard tool for assessing quality of software systems

and the processes that produce them. However, there are pitfalls associated with the use of

metrics. Managers often rely on metrics that they can easily obtain and understand, which

may be worse than using no metrics at all. Metrics can seem interesting, yet be uninformative,

irrelevant, invalid, or not actionable. Truly valuable metrics may be unavailable or difficult to

6



www.manaraa.com

obtain. Metrics can be difficult to conceptualize, and changes in metrics can appear unrelated

to changes in process.

Alternatively, software engineering activities generate a vast amount of data that, if

harnessed properly through data mining techniques, can help provide insight into many parts

of software development processes. Although many processes are domain- and organization-

specific, there are many common tasks which can benefit from such insight, and many common

types of data which can be mined. Our purpose here is to bring software engineering to the

attention of our community as an attractive testbed for data mining applications and to show

how data mining can significantly contribute to software engineering research.

The paper is organized as follows. In section 2.2, we briefly discuss related work,

pointing to surveys and venues dedicated to recent applications of data mining to software

engineering. Section 2.3 describes the sources of software data available for mining and

section 2.4 provides a brief, but broad, survey of current practices in this domain. Section

2.5 discusses issues specific to mining software engineering data and prerequisites for success.

Finally, section 2.6 concludes the paper.

2.2 Related Work

Although the application of data mining to software engineering artifacts is relatively new,

there are specific venues in which related papers are published, and authors that have created

resources similar to this survey.

Perhaps the earliest survey of the use of data mining in software engineering is the

1999 Data & Analysis Center for Software (DACS) state-of-the-art report [Mendonca and

Sunderhaft, 1999]. It consists of a thorough survey of data mining techniques, with emphasis

on applications to software engineering, including a list of 55 data mining products with

detailed descriptions of each product and summary information along a number of technical

as well as process-dependent features.

7



www.manaraa.com

Since then, and over the years, Xie has been compiling and maintaining an (almost

exhaustive) online bibliography on mining software engineering data. He also presented

tutorials on that subject at the International Conference on Knowledge Discovery in Databases

in 2006, and at the International Conference on Software Engineering in 2007, 2008, and

2009 [e.g., see Xie et al., 2007]. Many of the publications we cite here are also included in

Xie’s bibliography and tutorials.

The Mining Software Repositories (MSR) Workshop, co-located with the International

Conference on Software Engineering, was originally established in 2004. Papers published

in MSR focus on many of the same issues we have discussed in this survey, and the goal

of the workshops is to increase understanding of software development practices through

data mining. Beyond tools and applications, topics include assessment of mining quality,

models and meta-models, exchange formats, replicability and reusability, data integration,

and visualization techniques.

Finally, Kagdi et al. [2007] have recently published a comprehensive survey of ap-

proaches for mining software repositories in the context of software evolution. Although their

survey is narrower in scope than the overview given here, it has greater depth of analysis,

presents a detailed taxonomy of software evolution data mining methodologies, and identifies

a number of related research issues that require further investigation.

2.3 Software Engineering Data

The first step in the knowledge discovery process is to gain understanding about the data

that is available and the business goals that drive the process. This is essential for software

engineering data mining endeavors, because unavailability of data for mining is a factor that

limits the questions which can be effectively answered.

In this section, we describe software engineering data that are available for data mining

and analysis. Current software development processes involve several types of resources from

which software-related artifacts can be obtained. Software “artifacts” are a product of

8



www.manaraa.com

software development processes. Artifacts are generally lossy and thus cannot provide a

full history or context, but they can help piece together understanding and provide further

insight. There are many data sources in software engineering. In this paper, we focus only on

four major groups and describe how they may be used for mining software engineering data.

First, the vast majority of collaborative software development organizations utilize

revision control software1 (e.g., CVS, Subversion, Git, etc.) to manage the ongoing develop-

ment of digital assets that may be worked on by a team of people. Such systems maintain a

historical record of each revision and allow users to access and revert to previous versions.

By extension, this provides a way to analyze historical artifacts produced during software

development, such as number of lines written, authors which wrote particular lines, or any

number of common software metrics.

Second, most large organizations (and many smaller ones) also use a system for

tracking software defects. Bug tracking software (such as Bugzilla, JIRA, FogBugz, etc.)

associates bugs with meta-information (status, assignee, comments, dates and milestones,

etc.) that can be mined to discover patterns in software development processes, including

the time-to-fix, defect-prone components, problematic authors, etc. Some bug trackers are

able to correlate defects with source code in a revision system.

Third, virtually all software development teams use some form of electronic communi-

cation (email, instant messaging, etc.) as part of collaborative development. (Communication

in small teams may be primarily or exclusively verbal, but such cases are inconsequential

from a data mining perspective.) Text mining techniques can be applied to archives of such

communication to gain insight into development processes, bugs, and design decisions.

Fourth, software documentation and knowledge bases can be mined to provide further

insight into software development processes. This approach is useful to organizations that use

the same processes across multiple projects and want to examine a process in terms of overall

1Revision control is sometimes also identified by the acronyms VCS for version control system, and SCM
for source control management.

9



www.manaraa.com

effectiveness or fitness for a given project. Although knowledge bases may contain source

code, this approach focuses primarily on retrieval of information from natural languages.

2.4 Mining Software Engineering Data: A Brief Survey

In this section, we give a technique-oriented overview of how traditional data mining techniques

have been applied in the context of software engineering, followed by a more task-oriented

view in which we show how software tasks in three broad groups can benefit from data mining.

2.4.1 Data Mining Techniques in Software Engineering

In this section, we discuss several data mining techniques and provide examples of ways

they have been applied to software engineering data. Many of these techniques may be

applied to software process improvement. We attempt to emphasize innovative and promising

approaches and how they can benefit software organizations.

2.4.1.1 Association Rules and Frequent Patterns

Zimmermann et al. [2005] have developed the ROSE tool (Reengineering of Software Evolution)

to help guide programmers in performing maintenance tasks. The goals of ROSE are to 1)

suggest and predict likely changes, 2) prevent errors due to incomplete changes, and 3) detect

coupling undetectable by program analysis. Similar to Amazon’s system for recommending

related items, they aim to provide guidance akin to “Programmers who changed these

functions also changed. . . .” They use association rules to distinguish between change types

in CVS and try to predict the most likely classification of a change-in-progress.

Livshits and Zimmermann [2005] collaborated to create DynaMine, an automated

tool that analyzes code check-ins to discover application-specific coding patterns and identify

violations which are likely to be errors. Their approach is based on a classic a priori algorithm,

combined with pattern categorization and dynamic analysis. Their tool has been able to

10



www.manaraa.com

detect previously unseen patterns and several pattern violations in studies of the Eclipse and

jEdit projects.

Śliwerski et al. [2005] have used association rules to study the link between changes

and fixes in CVS and Bugzilla data for Eclipse and Mozilla. Their approach is to identify

fix-inducing changes, or those changes which cause a problem that must later be fixed.

(Closely related are fix-inducing fixes, or bug “fixes” which require a subsequent fix-on-fix.)

They identify several applications, including: characterization and filtering of problematic

change properties, analysis of error-proneness, and prevention of fix-inducing changes by

guiding programmers. Interestingly, they also find that the likelihood of a change being

fix-inducing (problematic) is greatest on Fridays.

Wasylkowski et al. [2007] have done work in automated detection of anomalies in object

usage models, which are collections of typical or “correct” usage composed of sequences of

method calls, such as calling hasNext() before next() on an Iterator object. Their Jadet

tool learns and checks method call sequences from Java code patterns to deduce correct usage

and identify anomalies. They test their approach on five large open-source programs and

successfully identify previously unknown defects, as well as “code smells” that are subject to

further scrutiny.

Weimer and Necula [2005] focus on improving the effectiveness of detecting software

errors. They note that most verification tools require software specifications, the creation

of which is difficult, time-consuming, and error-prone. Their algorithm learns specifications

from observations of error handling, based on the premise that programs often make mistakes

along exceptional control-flow paths even when they normally behave correctly. Tests which

force a program into error control flows have proven effective. The focus is on learning rules of

temporal safety (similar to [Wasylkowski et al., 2007]) and infer correct API usage. They test

several existing Java programs and demonstrate improvements in discovery of specifications

versus existing data mining techniques.

11



www.manaraa.com

Christodorescu et al. [2007] explore a related technique: automatic construction of

specifications consistent with malware by mining of execution patterns which are present in

known malware and absent in benign programs. They seek to improve the current process of

manually creating specifications that identify malevolent behavior from observations of known

malware. Not only is the output of this technique usable by malware detection software, but

also by security analysts seeking to understand malware.

2.4.1.2 Classification

Large software organizations frequently use bug tracking software to manage defects and

correlate them with fixes. Bugs are assigned a severity and assigned to someone within the

organization. Classification and assignment can sometimes be automated, but are often done

by humans, especially when a bug is incorrectly filed by the reporter or the bug database.

Anvik et al. [2006, 2005, 2006] have researched automatic classification of defects by severity

(“triage”), and Čubranić and Murphy [2004] have studied methods for determining who

should fix a bug. Both approaches use data mining and learning algorithms to determine

which bugs are similar and how a specific bug should be classified.

Work by Kim and Ernst [2007] has focused on classification of warnings and errors,

and specifically the ability to suggest to programmers which should be fixed first. Their

motivations include the high false-positive rates and spurious warnings typical of automatic

bug-finding tools. They present a history-based prioritization scheme that mines software

change history data that tells if and when certain types of errors were fixed. The intuition

is that categories of warnings that were fixed in previous software changes are likely to be

important. They report significant improvements in prioritization accuracy over three existing

tools.

Nainar et al. [2007] use statistical debugging methods together with dynamic code

instrumentation and examination of the execution state of software. They expand on the use

of simple predicates (such as branch choices and function return values) by adding compound

12



www.manaraa.com

boolean predicates. They describe such predicates, how they may be measured, evaluation

of predicate “interestingness”, and pruning of uninteresting predicates. They show how

their approach is robust to sparse random sampling typical of post-deployment statistical

debugging, and provide empirical results to substantiate their research.

2.4.1.3 Clustering

Most applications of data mining clustering techniques to software engineering data relate to

the discovery and localization of program failures.

Dickinson et al. [2001] examine data obtained from random execution sampling of

instrumented code and focus on comparing procedures for filtering and selecting data, each

of which involves a choice of a sampling strategy and a clustering metric. They find that

for identifying failures in groups of execution traces, clustering procedures are more effective

than simple random sampling; adaptive sampling from clusters was found to be the most

effective sampling strategy. They also found that clustering metrics that give extra weight to

unusual profile features were most effective.

Liu and Han [2006] present R-Proximity, a new failure proximity metric which pairs

failing execution traces and regards them as similar if they suggest roughly the same fault

location. They apply this new metric to failure traces for software systems that include

an automated failure reporting component, such as Windows and Mozilla. These traces

(which include related information like the stack trace) are created when a crash is detected,

and (with the user’s permission) are sent back to the developers of the software. Their

approach improves on previous methods that group traces which exhibit similar behaviors

(such as similar branch coverage) although the same fault may be triggered by different sets

of conditions. They use an existing statistical debugging tool to automatically localize faults

and better determine failure proximity.

13



www.manaraa.com

2.4.1.4 Text Mining

Text mining is an area of data mining with extremely broad applicability. Rather than

requiring data in a very specific format (e.g., numerical data, database entries, etc.), text

mining seeks to discover previously unknown information from textual data. Because many

artifacts in software engineering are text-based, there are many rich sources of data from

which information may be extracted. We examine several current applications of text mining

and their implications for software development processes.

Code duplication is a chronic problem which complicates maintenance and evolution

of software systems. Ducasse et al. [1999] propose a visual approach which is language-

independent, overcoming a major stumbling block of virtually all existing code duplication

techniques. Although their approach requires no language-specific parsing, it is able to detect

significant amounts of code duplication. This and other similar approaches help alleviate

the established problems of code duplication—such as unsynchronized fixes, code bloat,

architectural decay, and flawed inheritance and abstraction—which frequently contribute to

diminished functionality or performance.

Duplication of bug reports is also common, especially in organizations with widespread

or public-facing test and development activities. Runeson et al. [2007] have applied Natural

Language Processing and text mining to bug databases to detect duplicates. They use

standard methods such as tokenization, stemming, removal of stop words, and measures of

set similarity to evaluate whether bug reports are in fact duplicates. Because text mining

is computationally expensive, they also use temporal windowing to detect duplicates only

within a certain period of time of the “master” record. A case study of Sony Ericsson bug

data has yielded success rates between 40% and 66%.

Tan et al. [2007] have presented preliminary work that addresses an extremely common

occurrence: inconsistencies between source code and inline comments. The authors observe

that out-of-sync comments and code point to one of two problems: 1) bad code inconsistent

with correct comments, or 2) bad comments inconsistent with correct code. The former

14



www.manaraa.com

indicates existing bugs; the latter can “mislead programmers to introduce bugs in subsequent

versions.” However, differences between intent and implementation are difficult to detect

automatically. The authors have created a tool (iComment) which combines natural language

processing, machine learning, statistics and program analysis to automatically analyze

comments and detect inconsistencies. Their tests on 4 large code bases achieved accuracy of

90.8%–100% and successfully detected a variety of such inconsistencies, due to both bad code

and bad comments.

Locating code which implements specific functionality is important in software main-

tenance, but can be difficult, especially if the comments do not contain words relevant to the

functionality. Chen et al. [2001] propose a novel approach for locating code segments by ex-

amining CVS comments, which they claim often describe the changed lines and functionality,

and generally apply for many future versions. The comments can then be associated with the

lines known to have been changed, enabling users to search for specific functionality based on

occurrences of search terms. Obviously, the outcome depends on CVS comment quality.

Large software projects require a high degree of communication through both direct

and indirect mediums. Bird et al. [2006] mine the text of email communications between

contributors to open-source software. This approach allows them to detect and represent

social networks that exist in the open-source community, characterize interactions between

contributors, and identify roles such as “chatterers” and “changers”. The in-degree and

out-degree of email responses are analyzed, and communication is correlated with repository

commit activity. These techniques were applied to the Apache mailing lists and were able to

successfully construct networks of major contributors.

A very recent application of text mining is analysis of the lexicon (vocabulary) which

programmers use in source code. While identifier names are meaningless to a compiler, they

can be an important source of information for humans. Effective and accurate identifiers can

reduce the time and effort required to understand and maintain code.

15



www.manaraa.com

Antoniol et al. [2007] have examined the lexicon used during software evolution. Their

research studies not only the objective quality of identifier choices, but also how the lexicon

evolves over time. Evidence has been found to indicate that evolution of the lexicon is more

constrained than overall program evolution, which they attribute to factors such as lack of

advanced tool support for lexicon-related tasks.

2.4.2 Software Engineering Tasks That Benefit From Data Mining

In this section, we survey existing approaches which focus on improving effectiveness of tasks

in three aspects of software engineering: 1) development, 2) management, and 3) research.

Although not all of these approaches use techniques specific to data mining, outlining domain-

specific theoretical and empirical research can help develop understanding of which tasks can

be effectively targeted by data mining tools.

2.4.2.1 Development Tasks

Software development is inherently a creative process, and no two programs are the same.

During the initial programming phase of a software project, it is difficult to accumulate enough

relevant data to provide insights that can help guide development. However, as development

progresses, programming effort transitions to maintenance and refactoring, which we discuss

separately in this section. Debugging and software evolution are also discussed here.

Mens and Demeyer [2001] seek to identify effective ways of applying metrics to

evolving software artifacts. They cite evolution as a key aspect of software development, and

differentiate between predictive analysis and retrospective analysis, of which the latter is most

common. They propose a taxonomy to classify code segments with respect to evolution: 1)

evolution-critical (parts which must be evolved to improve software quality and structure, or

refactored to counter the effects of software aging); 2) evolution-prone (unstable parts that are

likely to be evolved, often because they correspond to highly volatile software requirements);

and 3) evolution-sensitive (highly-coupled parts that can cause ripple effects when evolved).

16



www.manaraa.com

Livshits and Zimmermann [2005] present a methodology for discovering common error

patterns in software, which combines mining of revision histories with dynamic analysis,

including correlation of method calls and bug fixes with revision check-ins. When applied to

large systems with substantial histories, they have been able to uncover errors and discover

new application-specific patterns. Often, the errors found with this approach were previously

unknown.

A similar testing approach was proposed by Liblit et al. [2005] which uses a dynamic

analysis algorithm to isolate defects through sampling of predicates during program execution.

They explore how to simplify redundant predicates, deal with predicates that indicate more

than one bug, and isolating multiple bugs at once. This work is contrasted with static analysis

of software quality, an approach which is currently very popular in software engineering.

Shirabad et al. [2001] propose the use of inductive methods to extract relations to

create Maintenance Relevance Relations, which indicate which files are relevant to each other;

this is helpful in the context of program maintenance, and especially for legacy systems, in

which it is often difficult to know what other pieces of code may be affected by a change.

They show how this approach can reveal existing complex interconnections among files in a

system, useful for comprehending both the files and their connections.

Zimmermann et al. [2005] propose a predictive variant of this approach; they elaborate

a tool for detecting coupling and predicting likely further changes. Their goal is to infer and

suggest likely changes based on changes made by a programmer, but also to prevent errors

due to incomplete changes. They use association rules to create linkage between changes,

and in some cases are able to reveal coupling that is undetectable with program analysis.

Predictive power increases with historical context for existing software, although it is known

that not all suggestions are valid even in the best case; they report potential changes for the

user to evaluate rather than omitting valid change linkages.

Mockus et al. [1999] take an approach closest to pure data mining: analyzing changes

to legacy code to promote good business decisions. They state that understanding and

17



www.manaraa.com

quantification are vital since “[e]ach change to legacy software is expensive and risky but it

also has potential for generating revenues [sic] because of desired new functionality or cost

savings in future maintenance.” They study a large software system at Lucent technologies,

highlight driving forces of change (related to both cost and quality), and discuss how to make

inferences using measures of change obtained from version control and change management

systems.

2.4.2.2 Management Tasks

Hassan [2006] discusses ways in which software artifacts and historical data can be used to

assist managers. He states: “Managers of large projects need to prevent the introduction

of faults, ensure their quick discovery, and their immediate repair while ensuring that the

software can evolve gracefully to handle new requirements by customers.” Their summary

paper addresses some challenges commonly faced by software managers (including bug

prediction and resource allocation) and provides several possible solutions.

These issues tie closely with research from Mockus et al. [2003] that deals with

predicting the amount and distribution of effort remaining to complete a project. They

propose a predictive model based on the concept that each software modification may cause

repairs at some later time, then use the model to predict and successfully plan development

resource allocation for existing projects. This model is a novel way to investigate and predict

effort and schedules, and the results they present also empirically confirm a relationship

between new features and bug fixes.

Canfora and Cerulo [2005] discuss impact analysis, “the identification of the work

products affected by a proposed change request, either a bug fix or a new feature request.”

They study open source project and extract change requests and related data from bug

tracking systems and versioning systems to discover which source files would be impacted by

a change request. Links from changes to impacted files in historical data and information

retrieval algorithms are used in combination to derive sets of impacted files.

18



www.manaraa.com

Atkins et al. [1999] attempt to quantify the effects of a software tool on developer

effort. Software tools can improve software quality, but are expensive to acquire, deploy

and maintain, especially in large organizations. They present a method for tool evaluation

that correlates tool usage statistics with estimates of developer effort. Their approach is

inexpensive, observational, non-intrusive in nature, and includes controls for confounding

variables; the subsequent analysis allows managers to accurately quantify the impact of a tool

on developer effort. Cost-benefit analyses provide empirical data (although possibly from

dissimilar domains) that can influence decisions about investing in specific tools.

2.4.2.3 Research Tasks

Data mining from the perspective of a software engineering researcher is unique in that the

goal is generally to gain understanding about a variety of projects in order to characterize

patterns in software development, rather than understanding about a specific project to guide

its development.

Researchers frequently analyze data from open-source projects, but as Howison and

Crowston [2004] explain, mining data from organizations like Sourceforge.net is fraught

with fundamental pitfalls such as dirty data and defunct projects. In addition, screening to

control for potential problems introduces bias and skew, and the similarities of software in

the open-source “ecosystem” can tempt researchers to create models which fit the training

data but do not generalize to other development patterns or ecosystems.

Software evolution is a popular topic for software data miners. Ball et al. [1997]

examine ways to better understand a program’s development history through partitioning and

clustering of version data. Gall and Lanza [2006] explores avenues for analysis, filtering, and

visualization of software processes evolution. Identification of architectural decay and trends

of logical coupling between unrelated files are also shown. Kagdi et al. [2006] take a similar

approach that focuses on identifying sequences of changed files by imposing partial temporal

19



www.manaraa.com

ordering on atomically-committed files, using heuristics such as time interval, committer, and

change-sets.

Extraction and correlation of software contributors is another area of active research.

Alonso et al. [2004] characterize the role of project participants based on rights to contribute.

Newby et al. [2003] study contributions of open-source authors in the context of Lotka’s

Law [Lotka, 1926] (which relates to predicting the proportion of authors at different levels

of productivity), while Zhang et al. [2007] focus on understanding individual developer

performance.

Several research groups have worked to create tools to simplify collection and analysis

of software artifacts and metrics, although some are more reusable than others.

One such available tool is GlueTheos, written by Robles et al. [2004], which is an

all-in-one tool for collecting data from open-source software (OSS). Currently, its analysis

and presentation options are somewhat limited, but its data input and storage architecture is

designed for extensibility.

Scotto et al. [2006] have proposed an architecture which focuses on providing a non-

invasive method for collection of metrics. Their approach leverages distributed and web-based

metrics collection tools to aggregate information automatically with minimal interaction from

users.

2.5 Mining Software Engineering Data: The Road from Here

Applications of data mining to various areas of software engineering—several of which have

been discussed in this paper—will certainly continue to develop and provide new insights and

benefits for software development processes. Regardless of the specific techniques, there are

aspects of data mining that are increasingly important in the domain of software engineering.

In this section we discuss a few issues that can help increase the effectiveness and

adoption of data mining, both in software engineering and in general.

20



www.manaraa.com

2.5.1 Targeting Software Tasks Intelligently

Data mining is only as good as the results it produces. Its effectiveness may be constrained by

the quantity or quality of available data, computational cost, stakeholder buy-in, or return on

investment. Some data or tasks are difficult to mine, and “mining common sense” is a waste

of effort, so choosing battles wisely is critical to the success of any data mining endeavor.

Automatable tasks are potentially valuable targets for data mining. Because software

development is so human-oriented, people are generally the most valuable resources in a

software organization. Anything that reduces menial workload requiring human interaction

can free up those resources to perform other tasks which only humans can do.

For example, large organizations may benefit substantially from automation of bug

report triage and assignment. Automatic analysis and reporting of defect detection, error

patterns, and exception testing can be highly beneficial, and the costs of computing resources

to accomplish these tasks are very reasonable. Text analysis of source code for duplication,

out-of-sync comments and code, and localization of specific functionality could also be

extremely valuable to maintenance engineers.

Data mining is most effective at finding new information in large amounts of data.

Complex software processes will generally benefit more from data mining techniques than

simpler, more lightweight processes that are already well-understood. However, information

gained from large processes will also have more confounding factors and be more difficult to

interpret and put into action. Changes to software process are not trivial, and the effects

that result from changes are not always what one might expect.

Equally important to remember is the fact that data mining is not a panacea or “silver

bullet” that improves software all by itself. Information gleaned from mining activities must

be correctly analyzed and properly implemented if it is to change anything. Data mining can

only answer questions that are effectively articulated and implemented, and good intentions

can’t rescue bad data (or no data).

21



www.manaraa.com

Data miners and software development organizations wishing to employ data mining

techniques should carefully consider the costs and benefits of mining their data. The cost to

an organization—whether in man-hours, computing resources, or data preparation—must be

low enough to be effective for a given application.

2.5.2 Lowering the Barrier of Entry

In order to make a difference in more areas of software engineering, data mining needs to be

more accessible and easier to adapt to tasks of interest. There is a great need for tools which

can automatically clean or filter data, a problem which is intractable in the general case but

possible for specific domains where data is in a known format.

In addition to automated “software-aware” data mining tools, we see a need for

research and tools aimed at simplifying the process of connecting data mining tools to

common sources of software data, as discussed in Section 2.4. Currently, it is common for

each new tool to re-implement problems which have already been solved by another tool,

perhaps only because the solutions have not been published or generalized.

Because many data mining tasks (e.g., text mining) are extremely computationally

expensive, replication of effort is a major concern. Tools that help simplify centralized

extraction and caching of results will make widespread data mining more appealing to large

software organizations; the same tools can make collaborative data mining research more

effective. The ability to share data among colleagues or collaborators without replication

amortizes the cost of even the most time-intensive operations. Removing the “do-it-all-yourself”

requirement will open many possibilities.

Intuitive client-side analysis and visualization tools can help spur adoption among

those responsible for applying newly-discovered information. Most current tools, although

extremely powerful, are targeted at individuals with strong fundamental understanding of

machine learning, statistics, databases, etc. A greater emphasis on creating approachable

22



www.manaraa.com

tools for the layperson with interest in using mined data will increase the value (or at least

an organization’s perception of value) of the data itself.

2.5.3 A Word of Caution

Just as with any tool, data mining techniques can be used either well or poorly. As data

mining techniques become more popular and widespread, there is a tendency to treat data

mining as a hammer and any available data as a nail. If unchecked, this can be a significant

drain on resources.

Software practitioners must carefully consider which, if any, data mining technique is

appropriate for a given task. Despite the many commonalities in software development artifacts

and data, no two organizations or software systems are identical. Because improvement

depends on intelligent interpretation of information, and the information that can be obtained

depends on the available data, knowledge of one’s data is just as crucial in software development

as it is in other domains. Thus, we reiterate that the first step is to understand what data is

available, then decide whether that can provide useful insights, and if so, how to analyze it.

2.6 Summary

We have identified reasons why software engineering is a good fit for data mining, including

the inherent complexity of development, pitfalls of raw metrics, and the difficulties of

understanding software processes.

We discussed four main sources of software “artifact” data: 1) version control systems,

2) bug trackers, 3) electronic developer communication, and 4) documentation and knowledge

bases. We presented three areas of software engineering tasks (development, management,

and research) and provided examples of how tasks in each area have been addressed by

software engineering researchers, both with data mining and other techniques.

23



www.manaraa.com

We also discussed four broad data mining techniques (association rules and frequent

patterns, classification, clustering, and text mining) and several instances of how each has

been applied to software engineering data.

Finally, we have presented some suggestions for future directions in mining of software

engineering data, and suggested that future research in this domain is likely to focus on

increased automation and greater simplicity.

24



www.manaraa.com

Chapter 3

Author Entropy: A Metric for Characterization of Software Authorship

Patterns

3.1 Introduction

Software development is a process fraught with complexity and unpredictability because

software is designed and written by people. Human interactions add complexity to development

processes, although some software engineering authorities disagree about the implications

[Brooks, 1975, Conway, 1968, Crowston and Howison, 2005].

Contributor interactions critically affect software development, and it follows that

characterizing contributor interaction is an important task. Studies of developer interac-

tions have generally focused on bug tracking, mailing list analysis, or studies of developer

productivity; few consider developer interaction within source code.

In this paper, we introduce author entropy, a metric that quantifies the mixture of

author contributions to a file. Just as code-level metrics—including file length, number

of function points, complexity, cohesion, and coupling—quantify properties of source code,

author entropy characterizes properties of author interactions within source files using a

simple summary statistic.

This paper describes the author entropy metric, presents a proof of concept empirical

study, and proposes topics for future research relating to author entropy and authorship

patterns.

25



www.manaraa.com

3.2 Author Entropy

In this section, we discuss entropy, define how entropy is calculated, and describe how entropy

applies to authorship.

3.2.1 Definitions of Entropy

Entropy is a measure of chaos or disorder in a system. Thermodynamics defines entropy as

a measure of randomness of molecules in a system; an increase in entropy leads to greater

spontaneity. Entropy is often understood as the “useless energy” in a system: energy which

is not available to perform work. The second law of thermodynamics states that the entropy

of an isolated system will tend to increase over time, approaching a maximum value at

equilibrium.

Information theory borrows the idea of entropy, defines it in terms of probability theory,

and uses it to analyze communication, compression, information content, and uncertainty

[Shannon, 1948]. In machine learning, entropy “characterizes the (im)purity of an arbitrary

collection of examples”, or the degree to which members of a collection can be split into

groups based on a given attribute [Mitchell, 1997].

Entropy may also be applied to software engineering as a measure of collaboration.

Specifically, we consider entropy of source code, which can be broken into smaller segments

(e.g., lines, functions, statements, identifiers, etc.) and classified by author. This definition of

entropy allows us to quantify the mixture of author contributions to a file. We discuss why

this matters to software in Section 3.2.3.

26



www.manaraa.com

3.2.2 Calculating Entropy

Entropy is a summary statistic1 calculated from the relative sizes of the groups or classifications

present in a system. Entropy formulae are nearly identical across domains, varying only in

constant multipliers and symbolic representation.

3.2.2.1 The Special Case: Binary Classification

We first consider entropy in the special case of a Bernoulli distribution with proportion p of

positive outcomes and proportion q of negative outcomes, where 0 ≤ p ≤ 1. The entropy of

system S (shown in Figure 3.1) is defined as:

E(S) ≡ −p · log2 p − q · log2 q (3.1)

0     0.5     1
p

0
 
 
 
 

0.5
 
 
 
 
1

En
tro

py
(S

)

Figure 3.1: Entropy of a Bernoulli distribution.

Note that entropy is maximized when p and q are equal, and minimized when either

proportion reaches 1.

1Summary statistics are lossy summaries of observations, such as mean, median, variance, skewness, and
kurtosis.

27



www.manaraa.com

3.2.2.2 The General Case: Any Number of Groups

Entropy also generalizes to an arbitrary number of groups. If elements of a system S belong

to c different classes, and pi is the proportion of elements in S belonging to class i, then the

entropy of S is:

E(S) ≡ −
c∑

i=1

(pi · log2 pi) (3.2)

E(S) is maximized when the proportions of classes in S are equal (∀ i, pi = 1
c
).

Equation 3.2 is a non-normalized summation, so the limit of E(S) is a function of c. As

shown in Figure 3.2, if the elements of a system S belong to c possible classes, the entropy

can be as large as:

Emax(S) ≡ log2 c (3.3)

0 4 8 12 16 20 24 28 32
Number of classes

0

1

2

3

4

5

M
ax

im
um

 E
nt

ro
py

(S
)

Figure 3.2: Maximum possible entropy for a system S as a discrete function of the total
number of groups.

Because the maximum possible entropy for a system is a function of c, intuitive

understanding of an entropy value can be difficult. For example, an entropy of 1 is the

maximum entropy for a system with 2 classes, but comparatively low entropy for a system

with 10 classes. Dividing E(S) by log2 c produces a value in the range [0,1]; this normalized

28



www.manaraa.com

entropy value represents the percentage of maximum entropy, which may be more intuitive

than non-normalized entropy. (See section Section 3.5.3 for normalization strategies.)

By definition, a system with only one class has zero entropy, so we define log 0 to be

0. We also note that the logarithmic base is unrelated to the number of classifications; we

use log2 for historical reasons rooted in information theory.

3.2.2.3 Entropy Applied to Text Authorship

If system S is a file and c is the number of authors, then each pi is the proportion of the text

written by author i, and E(S) is the entropy of the file. The values of pi are the proportions of

text segments attributed to each author. (Text segments may be of any size, although entropy

may be more meaningful when the segments are roughly equivalent in size or information

content.) Entropy increases as all authors’ contributions (pi) approach equality.

3.2.3 Interpretation of Entropy in Software

Entropy in source code is not inherently good or bad; it merely indicates that multiple people

are contributing in a fairly balanced way. Although low entropy could be an indicator of

modular team structure and well-architected software, it could also reflect poorly structured

code that few contributors are willing to work on. Similarly, high entropy could be the result

of poor communication or code that is in dire need of refactoring, or it may indicate excellent

organization that makes it easy for many authors to contribute to the same code. As with

any metric, context is essential.

Correlating entropy with other metrics and observations can provide valuable new

insights. For example, a file with high entropy written by several experts may be of higher

quality than a file written by one novice author; combining entropy with a metric of quality

can help distinguish between “good entropy” and “bad entropy”. Several ways to leverage

the author entropy metric are discussed more in Section 3.5.1.

29



www.manaraa.com

Author entropy cannot directly indicate attributes of the subject text. For example,

file length is obscured since files of different size but equal proportions of contribution have

the same entropy. Entropy also does not consider quality or the relative importance of

contributions, such as new functionality, bug fixes, comments, whitespace, or formatting.

3.3 Proof of Concept Study

In order to give the reader a better understanding of how author entropy can be useful, we

have conducted a small empirical study as a proof of concept that demonstrates possible

applications of the metric. We begin by describing the methods and tools used to gather

data and calculate author entropy. As part of that discussion we present the criteria we used

to select projects for the study and the threats to the validity of our results. We also present

some results of our preliminary study, including observations and analysis of authorship

patterns manifest in the data.

3.3.1 Extraction and Calculation

Author entropy calculations require data that attributes text fragments to authors. Software

authorship information can be gleaned from revision control systems that record snapshots of

development history [Ball et al., 1997]. Our exploratory study considers only projects stored

in Subversion.

We created a Python script to collect author data. We use Subversion’s log command

to identify the files modified in each revision, and record the revision number and path for

each file. We then use Subversion’s blame command to determine authorship for each line in

each changed file. Author counts are divided by the total number of lines in the file to obtain

pi values, and author entropy for each file is calculated as shown in Equation 3.2. Entropy

for each file is also normalized to the range [0,1] as in Equation 3.3.

30

http://svnbook.red-bean.com/en/1.0/re15.html
http://svnbook.red-bean.com/en/1.0/re02.html


www.manaraa.com

3.3.2 Project Selection

Due to the amount of data which must be analyzed, we identified a subset of Source-

Forge projects with favorable characteristics. (We selected SourceForge.net because it hosts

thousands of projects with multiple years of development history and various development

platforms.) Howison and Crowston [2004] has identified potential weaknesses in this approach.

Many projects were not suitable for our analysis because they 1) were immature,

abandoned, or not very active, 2) didn’t use Subversion exclusively, 3) had very few developers,

or 4) contained many non-source text files. We addressed these issues by limiting our sample

to projects that meet the following criteria:

1. Projects categorized as “Production/Stable”.

2. Projects registered since 2006 (higher SVN usage).

3. Projects with 5 or more committing developers.2

4. Projects in Java with easily identifiable source files.

We queried FLOSSmole [2004] data with these four criteria and identified 33 candidate

projects, with the following distributions of revisions and authors:

Min Q1 Median Q3 Max
Revisions 41 373 723 994 11576
Authors 5 6 8 13 23

Table 3.1: Distributions of revisions and authors for 33 projects selected from SourceForge.

3.3.3 Threats to Validity

One significant concern is the limited number of projects and the criteria used to select them.

Although many open-source projects share similar development patterns, by no means should

our results be construed as representative of all open-source projects, or even of all projects

2We scraped Subversion logs to determine the actual number of committing authors, instead of relying on
the number of registered developers.

31



www.manaraa.com

hosted on SourceForge. Many projects that did not fit our criteria would undoubtedly exhibit

interesting authorship patterns.

Hidden factors which we have not addressed include irregularities in the historical

data. For example, some projects contained anonymous commits, and many had a majority

of commits from a single author. Without more in-depth study of specific projects, we cannot

ascertain whether one developer in fact wrote all the code, or whether other contributors

submitted patches that a single developer then committed. We also did not examine any

specific changes to see whether changes in entropy were caused by source code reformatting,

which artificially attributes lines to the committing author.

Our study is limited to line-level granularity provided by Subversion, and does not

examine how much of a line changes.

With these threats to validity, however, it is important to reiterate that the focus of

this paper is the author entropy metric itself. Our study is intended as a proof of concept,

and should not be interpreted as exhaustive or complete. We describe potential avenues for

future research in Section 3.5.

3.3.4 Results

In this section, we identify and offer possible explanations for patterns we observed in our

study. These observations place author entropy in a real-world context; we demonstrate

how changes to individual files affect entropy, characterize relationships between number of

authors and entropy distribution, and identify project-wide entropy patterns.

3.3.4.1 Degree of Collaboration Within Files

For the projects in our sample, the maximum number of authors contributing to a project

was 23, but there were no individual files with more than 9 authors. Figure 3.3 shows the

counts of file revisions and unique files we observed with each number of authors, plotted on

a logarithmic scale.

32



www.manaraa.com

Authors File Revisions Unique Files

1

2

3

4

5

6

7

8

9

57760 18464

35121 13245

17155 4429

6788 1417

2355 344

571 81

109 24

46 6

20 1

Authors Minimum Average Maximum Possible

2

3

4

5

6

7

8

9

0.002327 0.493262381 1 1

0.008543 0.840764428 1.584963 1.5849625

0.038925 1.120455897 1.968349 2

0.205966 1.266067233 2.157154 2.3219281

0.267985 1.313162701 2.246707 2.5849625

0.821019 1.448633009 2.216427 2.8073549

0.967478 1.772688435 2.353587 3

1.73587 2.2145751 2.384427 3.169925

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 3 4 5 6 7 8 9

Observed Entropy

Minimum Average Maximum Possible

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9

18464
13245

4429

1417

344

81

24

6

1

57760
35121

17155

6788

2355

571

109
46

20

 

C
o
u

n
t

Number of Authors

File Revisions Unique Files

0

0.25

0.50

0.75

1.00

Normalized Entropy

Figure 3.3: Counts of file revisions and unique files plotted against number of authors.

We found it noteworthy that the counts of file revisions and unique files with n authors

are inversely proportional to n and exhibit near-perfect exponential decay. We hypothesize

that communication and coordination become prohibitively expensive as the number of

authors increases, and that these costs naturally discourage many authors from contributing

on a file.

3.3.4.2 Entropy Patterns Within Files

We also focused on fine-grained analysis of individual files to identify potentially interesting

entropy patterns. We chose files that had high standard deviation of normalized entropy over

multiple revisions (an indicator of significant changes) and compared author contributions

(both the number and percent of total lines) to entropy and normalized entropy. The results

for one such file are shown in Figure 3.4.

In Figure 3.4(c), the upper line is raw entropy and the lower line is normalized by

log2 5, since 5 is the maximum number of authors that ever contributed to the file. Normalized

entropy plateaus at approximately 0.8 before decreasing slowly. Note that, despite a significant

reduction in number of total lines at revision 262, author entropy does not drop rapidly.

However, the addition of new authors at revisions 86, 101, and 141 does cause a significant

increase in entropy.

33



www.manaraa.com

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

Percent Lines

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

Percent Lines

0

50

100

150

200

250

300

350

400

450

500

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

Total Lines

(a) Number of total lines by author.
6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

Percent Lines

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

Percent Lines

0

50

100

150

200

250

300

350

400

450

500

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

Total Lines

(b) Percentage of total lines by author.

Revision 61 62 65 86 93 101 141 146 163 189 262 372 594 642 935

adameq

adamg

ewelina_kruk

s_kruk

tomwor

Total Lines

adameq

adamg

ewelina_kruk

s_kruk

tomwor

Authors

Entropy

Normalized

101 91 49 39 39 39 42 67 74 74 78 162

140 153 152 152 18 18 18 16 16

131 89 89 89 88 48 48 46 41 37

296 300 301 271 281 231 168 167 166 166 111 111 111 111 108

4 4 1 1 1 1 1

296 300 301 372 372 411 436 448 450 452 245 252 250 247 324

0.0% 0.0% 0.0% 27.2% 24.5% 11.9% 8.9% 8.7% 8.7% 9.3% 27.3% 29.4% 29.6% 31.6% 50.0%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 32.1% 34.2% 33.8% 33.6% 7.3% 7.1% 7.2% 6.5% 4.9%

0.0% 0.0% 0.0% 0.0% 0.0% 31.9% 20.4% 19.9% 19.8% 19.5% 19.6% 19.0% 18.4% 16.6% 11.4%

100.0% 100.0% 100.0% 72.8% 75.5% 56.2% 38.5% 37.3% 36.9% 36.7% 45.3% 44.0% 44.4% 44.9% 33.3%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.9% 0.9% 0.4% 0.4% 0.4% 0.4% 0.3%

1 1 1 2 2 3 4 4 5 5 5 5 5 5 5

0.0000 0.0000 0.0000 0.8436 0.8026 1.3588 1.8359 1.8298 1.8884 1.8979 1.7989 1.7994 1.7945 1.7617 1.6259

0.0000 0.0000 0.0000 0.3633 0.3457 0.5852 0.7907 0.7881 0.8133 0.8174 0.7747 0.7750 0.7728 0.7587 0.7002

/trunk/sscf/WEB-INF/src/org/corrib/s3b/sscf/manage/BookmarksHelper.java

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

6
1

6
2

6
5

8
6

9
3

1
0
1

1
4
1

1
4
6

1
6
3

1
8
9

2
6
2

3
7
2

5
9
4

6
4
2

9
3
5

Entropy Over Time

(c) Entropy and normalized entropy.

Figure 3.4: Data for 15 revisions of BookmarksHelper.java in S3B. The x axis shows
consecutive revisions; actual time periods between revisions is not represented here.

Because entropy calculations include logarithmic factors, entropy is very sensitive

to small segments of text added by additional authors, but less sensitive to changes once

an author is “established.” Consider the two author case in Figure 3.1: 50% of maximum

entropy is reached when one author contributes approximately 10% of the text. This bias

makes entropy highly sensitive to initial changes by new authors.

34

https://s3b.svn.sourceforge.net/svnroot/s3b/trunk/sscf/src/org/corrib/s3b/sscf/manage/BookmarksHelper.java
https://s3b.sourceforge.net/


www.manaraa.com

3.3.4.3 Entropy Distributions Within Projects

Entropy is difficult to visualize for projects with many file revisions, so we created a histogram-

based plot to display entropy distributions over a project’s life. We found that using color

rather than a 3D height map improved scale determination and trend exploration for large

projects.

Although non-zero entropy often approximated a uniform distribution as projects

progressed, several projects had patterns of generally high or low entropy, dramatic changes

in entropy, and even “flip-flops” between high and low entropy.

(a) StoryTestIQ trends towards high entropy.

(b) Xendra trends towards low entropy.

(c) NakedObjects increases in entropy.

(d) SweetDEV RIA “flip-flops” between high and low entropy.

Figure 3.5: Excerpts of entropy distributions for several projects, excluding zero-entropy
values. The darkness of each (x, y) point represents the percentage of files at revision x that
map to normalized entropy y. These plots have 20 bins over the range of entropy values and
have been contrast-adjusted for better readability.

35



www.manaraa.com

Because the plots in Figure 3.5 are histograms, many files need to change before the

histogram changes significantly. Dramatic shifts in entropy can occur when: 1) entropy

shifts in a significant number of files or 2) a large number of files are added or removed.

Development activities that may cause these shifts include: new authors contributing to

existing files, refactoring, code formatting, or bug fixes.

3.3.4.4 Entropy Distributions Across Projects

We examined the distribution of entropy as the number of authors for a file increases, shown in

Figure 3.6. For n = 2...9 authors, we calculated univariate Gaussian kernel density estimators

(a form of histogram smoothing) for normalized and non-normalized entropy values. We then

combined each density function into a single 3D plot.

The entropy distribution for files with two authors was bimodal. Files were most likely

to have either: 1) very low entropy, indicating that one author contributed only a very small

portion of the file, or 2) very high entropy, indicating that both authors contributed almost

equally. However, the entropy distributions for more than two authors were unimodal with a

mean that increased with the number of authors.

Normalized entropy for three or more authors displayed an interesting trend. As the

number of authors increased, the distribution of normalized entropy remained fairly constant

with a peak around 0.6. Although entropy increases as more authors are added, it remains

proportional to maximum possible entropy. This may indicate hidden communication or

social factors that naturally keep entropy around 60% of its maximum when more than two

people contribute to a file.

3.3.5 Summary

In this preliminary empirical study, we have identified several fine- and coarse-grained

authorship patterns present in the projects we selected. We have observed a bimodal

distribution of entropy for files with only two authors, but noted that the entropy distribution

36



www.manaraa.com

Entropy Count

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2854

2836

2132

1662

1579

1365

1265

1116

1077

966

1075

1062

991

1329

1268

1363

1403

1633

2081

4382

136

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

0
.3
0

0
.3
5

0
.4
0

0
.4
5

0
.5
0

0
.5
5

0
.6
0

0
.6
5

0
.7
0

0
.7
5

0
.8
0

0
.8
5

0
.9
0

0
.9
5

1
.0
0

(a) Entropy distribution, 2 authors.

(b) Entropy distributions, 2–7 authors.

(c) Normalized entropy, 3–6 authors.

Figure 3.6: Plots of entropy distributions for 28,955 files from 33 open-source projects.

37



www.manaraa.com

for files with three or more authors is unimodal. We have also noticed significant shifts in

project-wide entropy for some projects.

While explanation of the causes of these observations is beyond the scope of this paper,

these patterns (and the questions they raise) suggest that author entropy is a potentially

valuable metric for software engineering researchers.

3.4 Related Work

Several existing tools include functionality for visual or numerical analysis of authorship

patterns.

CVSscan [Voinea et al., 2005] is a visualization tool for observing source code structure

and evolution during software maintenance. It extracts data from CVS repositories and

represents source code lines of one file at a time as a sequence of stacked lines that are colored

according to author, age, or code construct.

StatSVN [2006] retrieves information from Subversion repositories and generates charts,

tables and statistics which describe project development. A few of the statistics address

authorship patterns (e.g. number of source lines contributed per author, commit activity) at

the directory level.

CodeSaw [Gilbert and Karahalios, 2007] is a tool for visualizing author activity in

distributed software development. It combines code activity and developer communication to

reveal group dynamics. Data for up to eight authors may be visualized together on a timeline.

Hovering over the timeline displays detailed information for the selected developer and time

period.

Author entropy can be coupled with the functionality in these and other tools to

provide additional context for understanding established software metrics and patterns. We

explore several possible options and benefits in Section 3.5.1.

38



www.manaraa.com

3.5 Future Work

Our initial research generated many questions about the implications of author entropy in

software engineering and other domains. Although we cannot fully address these topics in

this paper, we list several avenues for future research.

3.5.1 Empirical Evaluation of Applicability

We hypothesize that high author entropy may be correlated with existing software metrics,

such as lines of code, high complexity, high coupling, low cohesion, high bug count, etc.

However, no work has yet been done to empirically test such theories. Studies of author

entropy in the context of Lotka’s Law [Lotka, 1926] and exponential decay (similar to work

done by Newby et al. [2003], but in the context of files rather than across projects) may also

provide significant new insights and allow characterization of developer productivity, both in

terms of quantity and significance of work.

Author entropy may also lead to new insights if combined with similar metrics in

other fields, such as Gini’s inequality coefficient [Gini, 1912]. For example, balanced project

contribution can mitigate “bus factor” risks, but could also be detrimental to a team’s

efficiency and agility if taken to extremes.

A topic of special interest to us is analysis and visualization of relationships between

author entropy and program structure. Mapping entropy values to a representation of a

program’s structure may reveal valuable information about its evolution, similar to the

findings of Gall and Lanza [2006]. Author entropy could also be an effective indicator of

design and behaviors which substantiate Conway’s Law [Conway, 1968].

3.5.2 Aggregating Entropy for Groups of Files

In this paper we have calculated author entropy only for individual files. Entropy can also

be calculated and analyzed for groups of files—such as packages, directories, modules, and

projects—at any level of depth in a project hierarchy.

39



www.manaraa.com

However, care must be taken as to how aggregated entropy is calculated. Two possible

techniques we have identified are to 1) create an average or linear combination of file entropies,

or 2) calculate entropy from a sum of author counts. Both techniques can pre-compute data

to be used in calculations for later revisions, but the results can differ significantly between

the two. Specifically, author entropy for a group of files with multiple authors should be

non-zero, but the first approach does not always yield non-zero values.

For example, consider n files, each of which is written exclusively by a different author.

The entropy for each individual file is zero, so any combination or average will always be zero.

(In fact, when any of the files in a group have zero entropy, results from the first approach will

be inaccurate.) The second approach represents overall author contributions more accurately,

but does require that author counts for the most recent revision of each file in the group be

stored.

Software developers are often unaware of exactly how much their programming efforts

overlap with others. The ability to aggregate entropy can help more effectively evaluate and

react to collaboration patterns at any level of granularity.

3.5.3 Normalizing Author Entropy

Comparison of files or revisions with different numbers of authors (and thus different maximum

entropies) can be difficult or unintuitive. Normalization facilitates comparison between files

by dividing observed entropy by maximum possible entropy, scaling entropy to the range [0,1].

However, maximum possible entropy can vary according to context, and normalization factors

must be chosen carefully. For example, consider the following possible options for normalizing

author entropy for a set of three files with authors {A,B}, {B,C,D}, and {E,F,G}:

1. Normalize each file’s entropy by log2 of the number of authors in that file; scales all

values to the range [0,1].

2. Normalize all entropies by log23, since the maximum number of authors in any file is 3.

40



www.manaraa.com

3. Normalize all entropies by log27, since there are a total of 7 unique authors between all

the files.

4. Do not normalize at all; define normalized entropy as ambiguous for sets with unknown

maximum entropy.

Each of these strategies has advantages and drawbacks which depend on context and

the question being asked. For example, the third approach produces deceptively low entropy

values when there are many unique authors and few authors per file, while the first two

approaches can distort the fact that files with more authors arguably have more complex

collaboration. In the first three normalization techniques, adding more files with common or

unique authors can change the normalization factor.

For example, we found files with a near-even split between two authors and near-

maximum entropy. The addition of a few lines from a third author raised entropy slightly,

but dividing by log23 reduced normalized entropy significantly. When the new lines were

changed by one of the original authors, entropy rebounded. In such cases, examining the

percent of possible entropy may detract from accurate understanding of entropy trends.

3.5.4 Parallels with Social Network Studies

Social network analysis is an important corollary to author entropy. It is quite likely that

underling social structure influences code collaboration.

Crowston and Howison [2005] have studied communication patterns in FLOSS (Free/Libre

and Open Source Software) projects by examining developer interaction in bug tracking sys-

tems. They define and examine “centrality”—the degree to which communication pathways

flow through a single developer. Centrality could augment author entropy data by providing

social explanations for high or low entropy.

Bird et al. [2008] examine hidden social structures in open-source projects. They

extract latent structure from email data, show that sub-communities form within projects,

41



www.manaraa.com

and demonstrate that sub-communities are correlated with collaboration behavior. Addition-

ally, they discuss parallels with Conway’s Law [Conway, 1968] and Brooks’ assertion that

communication channels increase as the square of group size [Brooks, 1975]. Identification of

sub-communities, organizational structure, and communication channels may strengthen our

hypothesis that author entropy is influenced by social structure.

Alonso et al. [2004] study distinctions between open-source developers and contributors,

and characterize roles of project participants based on rights to contribute. They mine CVS

data for code authors and use email data to correlate coding productivity and mailing

list activity, then construct interactions between contributors and committing developers.

Their results could extend the author entropy metric; instead of counting only committing

developers, indirect email contributors could be included in the entropy calculation.

3.6 Summary

Author entropy is a summary statistic that characterizes contribution patterns in source code.

Entropy is easy to calculate, and can be calculated for different levels of granularity (e.g.,

lines, methods, files, modules). While author entropy does not directly imply a level of code

quality, it can be used in conjunction with other software metrics to identify potential areas

of concern within the source code of a project.

In a proof of concept study, we calculated author entropy and analyzed authorship

patterns for a selection of open source data. Our exploratory research revealed interesting

patterns in entropy distributions which may be indicators of significant development activities.

A potentially promising area of future research is to examine author entropy in the

context of social network factors such as sub-communities and communication patterns.

Crowston and Howison [2005] assert, “it is wrong to assume that FLOSS projects are

distinguished by a particular social structure merely because they are FLOSS.” The analysis

of author contribution patterns in source code can help identify latent interactions and

implicit social structures.

42



www.manaraa.com

Because author entropy is a new metric, there are many unanswered questions about

its utility and applicability. The vast amount of publicly available software data makes open

source software research an especially suitable avenue for discovering the answers to these

questions and expanding our current understanding of software development patterns.

43



www.manaraa.com

Chapter 4

An Analysis of Author Contribution Patterns in Eclipse Foundation Project

Source Code

4.1 Introduction

Software development is an inherently complex activity, often involving a high degree of

collaboration between multiple individuals and teams, particularly when creating large

software systems. Interactions between individual contributors can affect virtually all aspects

of software development, including design, implementation, testing, maintenance, complexity,

and quality.

Collaboration involves cooperation, communication, and coordination, and generally

implies some governing organizational structure. The organization has an effect on the

structure of the software being developed, as per “Conway’s Law” [Conway, 1968]; presumably

applying equally to proprietary and open source software. Brooks [1975] noted that potential

communication channels increase as the square of the number of contributors. Thus, there is

benefit to understanding and managing collaboration so it does not become a liability.

Analyzing collaboration data can help explain how people work together to develop

software. Studies by Bird et al. [2008], Ducheneaut [2005], Gilbert and Karahalios [2007],

Mockus et al. [2002], Dinh-Trong and Bieman [2005], and others have examined interactions

between open source developers by correlating communication records (such as email) with

source code changes. Such approaches can expose patterns which reinforce contributor roles

and module boundaries, but may not be feasible for all projects (particularly if email archives

are unavailable) and can be difficult to compare or aggregate across disparate projects.

44



www.manaraa.com

In addition to examining collaboration across projects and modules, there is value in

understanding how contributors collaborate within files. Having a sense of what constitutes

“typical” collaboration for a project can provide valuable context. For example, if most files

in a project have one or two authors, a file with 10 authors may merit additional scrutiny.

In open source projects, unorganized and organic contributions may be evidence of the

bazaar rather than the cathedral [Raymond, 2001]. In any case, simply knowing can help set

expectations.

This paper both replicates and extends earlier results [Taylor et al., 2008]. Our research

goals center around detecting, characterizing, and understanding patterns of collaboration

within source code files. Our primary research questions are:

1. How often do n authors contribute to a given file?

We anticipate that most files have a single author, and as the number of authors

increases, the count of files with that many authors will decrease.

2. Is there a higher degree of collaboration in small or large files?

We anticipate that there will be a positive correlation between file size and author

count, partially because larger files have more code, and the potential for more distinct

functionalities and individual responsibilities.

3. Do files contain similar proportions of contributions from each author, or is there a

dominant author who is the clear “owner” of a given file, and if so, how dominant is

that author?

We anticipate that most source files will have one author who contributes significantly

more code than any other single author, and that this author’s dominance will be

inversely related to the number of contributing authors.

4. Is there a uniform or uneven distribution of collaboration across projects?

We anticipate that there will be a few “core” projects which are highly collaborative,

and many ancillary projects which are less collaborative.

45



www.manaraa.com

4.2 Methodology

We conducted an observational study on existing Eclipse projects by extracting author

attribution data for Java source code files from git repositories. In this section we describe

the process we used to select and obtain the data.

4.2.1 Project and File Selection

We chose to analyze Eclipse Foundation projects for several reasons, including:

• the number and variety of Eclipse-related projects,

• use of easily-recognizable programming languages,

• the ability to locally clone remote git repositories,

• a track record of sustained development activity,

• the existence of corporate-sponsored open source development projects.

We selected Java source files for our analysis, since over 92% of the source files in the

repositories are Java, and Eclipse is so closely aligned with Java. We mined data from 251,633

files in 592 projects. We included auto-generated code in our analysis, since the inclusion of

such files allows us to accurately characterize the state of the project to which they belong.

4.2.2 Extraction and Calculation

The first step in calculating author collaboration is to count how many authors have con-

tributed to a file and the number of lines contributed by each one. Summarizing raw line

counts with a single representative statistic per file allows for detailed statistical analysis

of collaboration trends. In this paper, we use: (1) the percentage of lines attributed to the

most dominant author in each file, and (2) author entropy (see Section 4.3 for details). These

numbers can help characterize some aspects of author contribution patterns.

46



www.manaraa.com

We created a bash script to locally clone each remote git repository and use ‘git blame’

to count the number of lines attributed to each author for each matching file. For each file in

a project, the file path and line counts attributed to each author were recorded.

We then wrote a simple CLI tool to process this data and calculate the percentage of

lines written by each author. Author entropy for each file was calculated using Equation 4.1.

We also normalized entropy by dividing by the maximum possible entropy for each file, shown

in Equation 4.2.

4.2.3 Limitations of the Data

We draw data only from git, a source control management (SCM) system that preserves

snapshots of file state over time. We do not consider other collaboration mechanisms, such as

email archives, forums, etc., although this could be a very interesting extension of this work.

It it important to note that the SCM record of who “owns” a line of code only

identifies the individual who committed the most recent change affecting that line. It does

not guarantee that the contributor actually conceived of, wrote, or even understands the

code. By itself, it also does not tell us the genesis of a line; it could be new, a minor tweak,

or a formatting change.

Because we consider only the latest revision of each file, this data cannot be used to

make any inferences about collaboration over time. Without historical data, we can see the

result of collaboration, but not the nature of the evolution of such collaboration.

Lastly, because we record author counts but not relative ordering of contributions from

various authors, this data does not fully capture or express the amount of disorder. Because

only percentages by each author are considered, the data makes no distinction between files

with orderly, segregated blocks of contributions and files in which authors’ contributions are

all mixed together.

47



www.manaraa.com

4.3 Author Entropy

Author entropy is a summary statistic that quantifies the mixture of authors’ contributions

to a file. Contribution percentages are weighted using logarithms and summed; the resulting

value conveys more information about the distribution than a simple average, and can expose

interesting authorship patterns more readily than raw line counts. Taylor et al. [2008]

introduced author entropy and examined distributions in a proof-of-concept study with

SourceForge data. A follow-on paper [Casebolt et al., 2009] examined author entropy in

GNOME application source.

Entropy originated in the field of thermodynamics, which defines it as the disorder or

randomness of molecules in a system. Entropy has also been defined in terms of probability

theory and used in the fields of information theory [Shannon, 1948] and machine learning

[Mitchell, 1997].

We apply entropy as a measure of collaboration between individual contributors.

Specifically, we consider entropy of source code by counting the number of lines attributed

to each author. This definition of entropy allows us to quantify the mixture of author

contributions to a file.

4.3.1 Calculating Entropy

Entropy formulae are nearly identical across domains, and generally vary only in symbolic

representation and constant multipliers. We use a formulation very similar to that used in

machine learning.

If F is a file, A is the number of authors, and pi is the proportion of the text attributed

to author i, then the entropy of the file is defined as:

E(F ) ≡ −
A∑
i=1

(pi · log2 pi) (4.1)

48



www.manaraa.com

E(F ) is maximized when all authors contributed equal proportions of text in a file

(∀ i, pi = 1
A

). The upper limit of E(F ) is a function of A:

Emax(F ) ≡ log2 A (4.2)

We use log2 for historical reasons tied to information theory (essentially, calculating

the number of bits required to encode information). Although any logarithmic base would

suffice, it is convenient that using log2 results in entropy values in the range (0,1] for a binary

classification.

4.3.2 Normalizing Entropy

Because the maximum possible entropy for a file is a function of the number of authors,

intuitive understanding of entropy can be difficult. For example, an entropy value of 1.0 is

the maximum possible for a file with 2 authors, but comparatively low for a file with 10

authors. Dividing E by Emax produces a normalized value in the range (0,1] which represents

the percentage of maximum entropy. Normalized entropy can be easier to understand, and in

some cases more appropriate for comparisons between disparate files.

4.4 Interpreting Collaboration

A high degree of collaboration within a given source file is not inherently good or bad; as

with any metric, context is key. Without knowledge about additional factors such as a

project’s state, organization, and development conditions, interpreting collaboration is purely

speculative. To illustrate this point, we list below a variety of factors that could influence

author entropy.

Low entropy could result from factors as varied as:

• Well-architected and modular software.

• Excellent communication and coordination.

49



www.manaraa.com

• Lack of involvement from potential contributors.

• A disciplined team in which each person “owns” a module.

• A gatekeeper who gets credit for code written by others.

• Code that few people understand.

• Code that was reformatted and old attributions lost.

• Code with exhaustive unit tests, known to be correct.

• Code with negligible unit tests and unknown defects.

• Auto-generated code that no human actually “wrote.”

• Critical code that few people are allowed to modify.

• Mature code with little or no need for maintenance.

• Stale code that isn’t touched, even if it needs fixing.

• Dead code which is no longer used or modified.

High entropy could result from factors as varied as:

• Code with high coupling or many inter-dependencies.

• Unrelated code entities being stored in a single file.

• Adding manpower to a late project (Brooks’ law).

• Extremely buggy code that is constantly patched.

• Extremely stable code that is well-maintained.

• Enhancements or fixes that touch several files.

• Contributors joining or leaving a project team.

• Actively evolving code or refactoring activity.

• Miscommunication or lack of clear direction.

• Healthy collaboration between contributors.

50



www.manaraa.com

• Overlapping responsibilities of contributors.

• Agile development or team programming.

• Potential for integration-stage problems.

• Continuous integration testing and fixes.

Such a menagerie of disparate factors is not a flaw in the metric itself, but rather

suggests that any metric can easily be misinterpreted without proper context. For example, a

file with high entropy written by several experts is likely of higher quality than a file written

by one novice author. Two files may have similar entropies despite a large size difference. A

recent contributor may understand a file better than the original author who wrote it years

ago. Correlating author entropy with other metrics and observations can help distinguish

between “good” and “bad” entropy and provide valuable new insights.

Author entropy cannot directly indicate other attributes of the source code. For

example, file length is obscured since files of different size but equal proportions of contribution

have the same entropy. Entropy also does not reflect quality or the relative importance of

contributions, such as new functionality, bug fixes, comments, whitespace, or formatting.

Although different entropy calculation techniques could opt to account for such factors, there

is no way to deduce the weighting of such factors from a single number.

4.5 Results

The line count of the source files we examined ranged from 1 to 228,089, with a median of

89. The extreme right-tail skew (97.5% have 1,000 lines or fewer, 92.5% have 500 or fewer)

suggests that the data may have an exponential distribution. Plotting the data with a log10

transformation produces a histogram (Figure 4.1) that closely resembles a normal distribution.

A Q-Q plot showed that the population fits a log-normal distribution quite well, although

the long tail caused higher residual deviations in the upper range. We also examined the files

with 10 lines or fewer and found that nearly all of them were related to unit tests; several

51



www.manaraa.com

projects have extensive tests with Java source files that specify in and out conditions, but

have little or no code. Excluding these left-tail outliers greatly improved the fit of the Q-Q

plot in the low range.

file size in lines

Fr
eq
ue
nc
y

0
50
00

10
00
0

15
00
0

20
00
0

1 10 100 1K 10K 100K

Figure 4.1: Frequency of file sizes (in number of lines).

To answer our first research question, we plotted the frequencies of files with n authors.

The resulting histogram was an exponential decay curve, and when plotted with a logarithmic

scale, a near-perfect log-linear decay is evident (see Figure 4.2). This confirms our hypothesis

that most files have a single author, and that the number of files with n authors decreases as

n increases. It is also strikingly similar to Lotka’s Law [Lotka, 1926], which states that the

number of authors who contribute n scientific publications is about 1/na of those with one

publication, where a is nearly always 2. Lotka’s law predicts about 60% of authors publish

only once; in our data, 58.22% of the files have one author.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
10

10
0

1K
10
K

10
0K 146332

57896
24250

11892
5653

2697
1445

704
353

200
98

46
26

13 12
6

2

6

1 1

Figure 4.2: Frequency of number of authors contributing to a given file.

52



www.manaraa.com

To answer our second research question, we plotted file size distributions grouped by

author count (see Figure 4.3). The log-linear increase in average file size as the number of

authors increases confirms our hypothesis that, on average, there is more collaboration (i.e.,

more authors) in large files. However, we must note that there is a degree of uncertainty due

to the decreasing sample sizes for higher author counts and the extreme outliers for lower

author counts.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

authors

lin
es

1
10

10
0

1K
10
K

10
0K

Upper circles represent the average number of lines per file.

Lower circles represent the average number of lines per author per file.

Figure 4.3: Author count vs. file size (in number of lines).

We augmented Figure 4.3 with two additional data series: (1) the average number

of lines in a file, and (2) the average number of lines contributed per author to a file. Note

that there is a pronounced dip between 1 and 10 authors, but a fairly consistent average

throughout. Although evaluating the causes and ramifications of this trend are beyond the

scope of this paper, we find this to be an interesting topic for future work.

To answer our third research question, we plotted the number of lines in files with

two or more authors against the percentage of lines attributed to the most dominant author

53



www.manaraa.com

in each file (see Figure 4.4). We also plotted the distributions of author dominance for all

files with a given author count (see Figure 4.5).

These plots confirm our hypothesis that most files have a dominant author, and

that the percentage of lines attributed to that author generally decreases as the count

of contributing authors increases. We find it noteworthy that author dominance diverges

increasingly from the lower bound ( 1
x
). This suggests that in Eclipse projects, more authors

contributing to a file does not imply balanced contributions; rather, a single author usually

dominates the others.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lines

1 10 100 1K 10K 100K

Figure 4.4: Line count vs. percent written by dominant author for files with 2+ authors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

authorsFigure 4.5: Author count vs. author dominance. Circles represent the curve 1
x
.

To answer our fourth research question, we plotted the number of lines in a project

against the number of unique authors contributing to it for all 592 projects (see Figure 4.6).

54



www.manaraa.com

Over 83% of the projects have 10 or fewer unique authors, and some significant outliers have

much larger numbers of authors.

We also manually examined the 211 files with 11 or more authors. Nearly all of these

files came from a handful of projects, all of which were among the top 25 projects with the

most authors. These projects include:

• org.eclipse.ui.workbench (Eclipse IDE interface)

• org.eclipse.jdt.core (Java Development Tools)

• org.eclipse.cdt (C/C++ Development Tooling)

• org.eclipse.pdt (PHP Development Tools)

• org.eclipse.birt.report (Business Intelligence and Reporting Tools)

• org.eclipse.jface (UI application framework/toolkit based on SWT)

The nature and role of these highly-collaborative projects confirms our hypothesis that

collaboration is not distributed uniformly, but is concentrated in a few core projects. This

phenomenon is also related to our second research question, about the relationship between

collaboration and file size.

0 10 20 30 40 50 60 70

10
0

10
00

10
00
0

10
00
00

10
00
00
0

authors

lin
es

Figure 4.6: Author count vs. total number of lines for all 592 projects.

55



www.manaraa.com

4.5.1 Additional Questions

In addition to our primary research questions, we also replicated some results from prior

related work to verify whether the assertions made therein still hold for broader data. These

results are related to distributions of author entropy (see Section 4.3) over varying file sizes

and author counts.

In [Taylor et al., 2008] we found a positive relationship between author count and

entropy (entropy rises as the number of authors increases). We found the same trend in

Eclipse source code, although it breaks down somewhat for 11 or more authors due to

sparseness of data (see Figure 4.7).

1 3 5 7 9 11 13 15 17 19

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

(a)

en
tro
py

1 3 5 7 9 11 13 15 17 19

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

no
rm

al
iz

ed
 e

nt
ro

py

Figure 4.7: Author count vs. (a) entropy and (b) normalized entropy.

Although the entropy metric is inherently biased toward higher values (particularly

when there are more authors), any file can have low entropy when one of the authors is

extremely dominant. However, because the maximum possible entropy for a given file is

a function of the number of authors, it can be difficult to compare entropies for files with

different number of authors. For this reason, we use normalized entropy, which always falls

in the range [0,1] regardless of author count, and thus represents the percentage of maximum

possible entropy.

56



www.manaraa.com

Interestingly, the data exhibits a trend previously observed [Taylor et al., 2008] in a

very constrained set of SourceForge data: distributions of normalized entropy tend to center

around 0.6 (or 60% of maximum possible entropy) as the author count increases. Even as

the data becomes more sparse for higher author counts, the distributions tend to converge on

the same range.

Casebolt et al. [2009] examined two-author source code files and observed an inverse

relationship between file size and entropy (small files have high entropy and vice versa). A

similar pattern occurs in our data, as shown in Figure 4.8(a). Unfortunately, it is impossible to

discern how many data points share the same location. The task is even more hopeless when

all files (not just those with two authors) are included in the same plot, as in Figure 4.8(b).

To better understand the distribution and density of these data, we borrow a tool used by

Krein et al. [2010] to visualize language entropy: 3D height maps. This technique generates

an image in which densely-populated regions appear as elevated terrain (see Figure 4.9).

0.0 0.2 0.4 0.6 0.8 1.0

(a)

1
10

10
0

1K
10
K

10
0K

0.0 0.2 0.4 0.6 0.8 1.0

(b)

1
10

10
0

1K
10
K

10
0K

Figure 4.8: Normalized entropy vs. line count for (a) two authors and (b) all files.

Figure 4.9 is an adaptation of both Figure 4.8(b) (adding height) and Figure 4.1

(adding depth). Starting from the back/left, the curves represent files in which one author

57



www.manaraa.com

“owns” all lines but one, two, etc. The disproportionate distribution of files on the furthest

curves suggests that one- and two-line edits are probably extremely common occurrences in

the projects we examined. This may be a manifestation of many small bug fixes, refactorings,

interface changes, etc.

Figure 4.9: Height map of line count vs. normalized entropy (same data as Figure 4.8b).

4.6 Future Work

Although this paper both replicates and adds to the results of prior work [Taylor et al., 2008],

we also see several promising ways to extend this research.

First, statistical analysis of author entropy over time, including how entropy of files,

modules, and projects change over time, and why. One limitation of this paper is that we

examine only the most recent version of each file; we do not consider previous versions of

existing files, or files which once existed but have since been deleted. We see significant value

58



www.manaraa.com

in understanding not only code ownership, but the degree of the resulting disorder, and how

it is related to and caused by the development processes at play within a project.

Second, correlation of entropy with other code ownership measurements, communica-

tion records (such as email), and development roles. This could build on studies such as those

by Bird et al. [2008], Mockus et al. [2002], Dinh-Trong and Bieman [2005], Jensen and Scacchi

[2007], and von Krogh et al. [2003], among others. Understanding how contributor roles and

project organization affect source code entropy could help OSS project administrators (or

“core team”) to more effectively analyze and organize contributors’ efforts.

4.7 Conclusion

We discovered that author attribution data for source code files can provide insight into

the nature of collaboration between source code contributors. As researchers, we seek to

understand how people work together to develop complex systems, and to explain success or

failure based on the data at our disposal. We are fascinated by the patterns of order which

seem to naturally fall into place amid the organic chaos of free-form interactions.

Our study revealed similar authorship patterns in a vastly different code base than

prior work, and suggested interesting new patterns we had not previously considered. Author

entropy continues to be an interesting and useful metric for characterizing contributor

interactions. Future research will improve our ability to link collaborative activity with the

underlying factors that influence it, and facilitate improvements that enhance the quality of

the software we produce.

59



www.manaraa.com

References

FLOSSmole, 2004. URL http://ossmole.sourceforge.net/.

StatSVN, 2006. URL http://statsvn.org/.

Omar Alonso, Premkumar T. Devanbu, and Michael Gertz. Extraction of Contributor

Information from Software Repositories. Submitted to MSR ’06, 2004. URL http:

//wwwcsif.cs.ucdavis.edu/~alonsoom/contributor_information_adg.pdf.

Giuliano Antoniol, Yann-Gaël Guéhéneuc, Ettore Merlo, and Paolo Tonella. Min-

ing the Lexicon Used by Programmers during Software Evolution. In 23rd IEEE

International Conference on Software Maintenance, pages 14–23, October 2007.

doi:10.1109/ICSM.2007.4362614.

John Anvik. Automating Bug Report Assignment. In 28th International Conference on

Software Engineering, pages 937–940, May 2006. doi:10.1145/1134285.1134457.

John Anvik, Lyndon Hiew, and Gail C. Murphy. Coping with an Open Bug Repository.

In 3rd OOPSLA Workshop on Eclipse Technology eXchange, pages 35–39, October 2005.

doi:10.1145/1117696.1117704.

John Anvik, Lyndon Hiew, and Gail C. Murphy. Who Should Fix This Bug? In

28th International Conference on Software Engineering, pages 361–370, May 2006.

doi:10.1145/1134285.1134336.

Phillip G. Armour. The Case for a New Business Model. Communications of the ACM, 43:

19–22, August 2000a. doi:10.1145/345124.345131.

Phillip G. Armour. The Five Orders of Ignorance. Communications of the ACM, 43:17–20,

October 2000b. doi:10.1145/352183.352194.

David Atkins, Thomas Ball, Todd Graves, and Audris Mockus. Using Version Control Data

to Evaluate the Impact of Software Tools. In 21st International Conference on Software

Engineering, pages 324–333, May 1999. doi:10.1145/302405.302649.

60

http://ossmole.sourceforge.net/
http://statsvn.org/
http://wwwcsif.cs.ucdavis.edu/~alonsoom/contributor_information_adg.pdf
http://wwwcsif.cs.ucdavis.edu/~alonsoom/contributor_information_adg.pdf
http://dx.doi.org/10.1109/ICSM.2007.4362614
http://dx.doi.org/10.1145/1134285.1134457
http://dx.doi.org/10.1145/1117696.1117704
http://dx.doi.org/10.1145/1134285.1134336
http://dx.doi.org/10.1145/345124.345131
http://dx.doi.org/10.1145/352183.352194
http://dx.doi.org/10.1145/302405.302649


www.manaraa.com

Thomas Ball, Adam A. Porter, and Harvey P. Siy. If Your Version Control System Could

Talk. . . . In Workshop on Process Modeling and Empirical Studies of Software Engineering,

May 1997.

Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swaminathan. Min-

ing Email Social Networks. In 3rd International Workshop on Mining Software Repositories,

pages 137–143, May 2006. doi:10.1145/1137983.1138016.

Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and Premkumar Devanbu.

Latent Social Structure in Open Source Projects. In 16th ACM SIGSOFT International

Symposium on the Foundations of Software Engineering, pages 24–35, November 2008.

doi:10.1145/1453101.1453107.

Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software Engineering. Addison-

Wesley Longman Publishing Co., Inc., January 1975. ISBN 0201006502.

Frederick P. Brooks, Jr. No Silver Bullets—Essence and Accidents of Software Engineering.

IEEE Computer, 20(4):10–19, April 1987. doi:10.1109/MC.1987.1663532.

Gerardo Canfora and Luigi Cerulo. Impact Analysis by Mining Software and Change

Request Repositories. In 11th IEEE International Software Metrics Symposium, pages

9–29, September 2005. doi:10.1109/METRICS.2005.28.

Jason R. Casebolt, Jonathan L. Krein, Alexander C. MacLean, Charles D. Knutson, and

Daniel P. Delorey. Author Entropy vs. File Size in the GNOME Suite of Applications.

In 6th Working Conference on Mining Software Repositories, pages 91–94, May 2009.

doi:10.1109/MSR.2009.5069484.

Annie Chen, Eric Chou, Joshua Wong, Andrew Y. Yao, Qing Zhang, Shao Zhang, and Amir

Michail. CVSSearch: Searching through Source Code using CVS Comments. In 17th

IEEE International Conference on Software Maintenance, pages 364–373, November 2001.

doi:10.1109/ICSM.2001.972749.

Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. Mining Specifications of Mali-

cious Behavior. In 6th Joint Meeting of the European Software Engineering Conference and

the ACM SIGSOFT International Symposium on the Foundations of Software Engineering,

pages 5–14, September 2007. doi:10.1145/1342211.1342215.

Melvin E. Conway. How Do Committees Invent? Datamation, 14(4):28–31, April 1968. URL

http://www.melconway.com/research/committees.html.

61

http://dx.doi.org/10.1145/1137983.1138016
http://dx.doi.org/10.1145/1453101.1453107
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/METRICS.2005.28
http://dx.doi.org/10.1109/MSR.2009.5069484
http://dx.doi.org/10.1109/ICSM.2001.972749
http://dx.doi.org/10.1145/1342211.1342215
http://www.melconway.com/research/committees.html


www.manaraa.com

Kevin Crowston and James Howison. The Social Structure of Free and Open Source Software

Development. First Monday, 10(2), February 2005.

Davor Čubranić and Gail C. Murphy. Automatic Bug Triage Using Text Categorization. In

16th International Conference on Software Engineering & Knowledge Engineering, pages

92–97, June 2004.

William Dickinson, David Leon, and Andy Podgurski. Finding Failures by Cluster Analysis

of Execution Profiles. In 23rd International Conference on Software Engineering, pages

339–348, May 2001. doi:10.1109/ICSE.2001.919107.

Trung T. Dinh-Trong and James M. Bieman. The FreeBSD Project: A Replication Case

Study of Open Source Development. IEEE Transactions of Software Engineering, 31(6):

481–494, June 2005. doi:10.1109/TSE.2005.73.

Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A Language Independent Approach

for Detecting Duplicated Code. In 15th IEEE International Conference on Software

Maintenance, pages 109–118, August 1999. doi:10.1109/ICSM.1999.792593.

Nicolas Ducheneaut. Socialization in an Open Source Software Community: A Socio-

Technical Analysis. Computer Supported Cooperative Work, 14(4):323–368, August 2005.

doi:10.1007/s10606-005-9000-1.

Harald C. Gall and Michele Lanza. Software Evolution: Analysis and Visualization. In

28th International Conference on Software Engineering, pages 1055–1056, May 2006.

doi:10.1145/1134285.1134502.

Eric Gilbert and Karrie Karahalios. CodeSaw: A Social Visualization of Distributed Software

Development. In 11th IFIP International Conference on Human-Computer Interaction,

pages 303–316, September 2007. doi:10.1007/978-3-540-74800-7 25.

Corrado Gini. Variabilità e mutabilità. Studi Economico Giuridici della Reale Università

di Cagliari, 1912. Reprinted in Memorie di metodologia statistica (Ed. E. Pizetti and T.

Salvemini.) Rome: Libreria Eredi Virgilio Veschi, 1955.

Ahmed E. Hassan. Mining Software Repositories to Assist Developers and Support Man-

agers. In 22nd IEEE International Conference on Software Maintenance, pages 339–342,

September 2006. doi:10.1109/ICSM.2006.38.

Ahmed E. Hassan, Richard C. Holt, and Audris Mockus. Call for Papers, 1st International

Workshop on Mining Software Repositories, 2004. URL http://msr.uwaterloo.ca/

MSR2004_CallForPapers.pdf.

62

http://dx.doi.org/10.1109/ICSE.2001.919107
http://dx.doi.org/10.1109/TSE.2005.73
http://dx.doi.org/10.1109/ICSM.1999.792593
http://dx.doi.org/10.1007/s10606-005-9000-1
http://dx.doi.org/10.1145/1134285.1134502
http://dx.doi.org/10.1007/978-3-540-74800-7_25
http://dx.doi.org/10.1109/ICSM.2006.38
http://msr.uwaterloo.ca/MSR2004_CallForPapers.pdf
http://msr.uwaterloo.ca/MSR2004_CallForPapers.pdf


www.manaraa.com

James Howison and Kevin Crowston. The Perils and Pitfalls of Mining SourceForge. In 1st

International Workshop on Mining Software Repositories, pages 7–11, May 2004.

Chris Jensen and Walt Scacchi. Role Migration and Advancement Processes in OSSD Projects:

A Comparative Case Study. In 29th International Conference on Software Engineering,

pages 364–374, May 2007. doi:10.1109/ICSE.2007.74.

Huzefa Kagdi, Shehnaaz Yusuf, and Jonathan I. Maletic. Mining Sequences of Changed-files

from Version Histories. In 3rd International Workshop on Mining Software Repositories,

pages 47–53, May 2006. doi:10.1145/1137983.1137996.

Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A Survey and Taxonomy of

Approaches for Mining Software Repositories in the Context of Software Evolution. Journal

of Software Maintenance and Evolution: Research and Practice, 19(2):77–131, March 2007.

doi:10.1002/smr.344.

Sunghun Kim and Michael D. Ernst. Which Warnings Should I Fix First? In 6th Joint Meeting

of the European Software Engineering Conference and the ACM SIGSOFT International

Symposium on the Foundations of Software Engineering, pages 45–54, September 2007.

doi:10.1145/1287624.1287633.

Jonathan L. Krein, Alexander C. MacLean, Daniel P. Delorey, Charles D. Knutson, and

Dennis L. Eggett. Language Entropy: A Metric for Characterization of Author Programming

Language Distribution. In 4th International Workshop on Public Data about Software

Development, page 6, June 2009.

Jonathan L. Krein, Alexander C. MacLean, Charles D. Knutson, Daniel P. Delorey, and

Dennis L. Eggett. Impact of Programming Language Fragmentation on Developer Produc-

tivity: a SourceForge Empirical Study. International Journal of Open Source Software and

Processes, 2(2):41–61, June 2010. doi:10.4018/jossp.2010040104.

Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan. Scalable

Statistical Bug Isolation. In 26th ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 15–26, June 2005. doi:10.1145/1065010.1065014.

Chao Liu and Jiawei Han. Failure Proximity: A Fault Localization-Based Approach. In 14th

ACM SIGSOFT International Symposium on the Foundations of Software Engineering,

pages 46–56, November 2006. doi:10.1145/1181775.1181782.

63

http://dx.doi.org/10.1109/ICSE.2007.74
http://dx.doi.org/10.1145/1137983.1137996
http://dx.doi.org/10.1002/smr.344
http://dx.doi.org/10.1145/1287624.1287633
http://dx.doi.org/10.4018/jossp.2010040104
http://dx.doi.org/10.1145/1065010.1065014
http://dx.doi.org/10.1145/1181775.1181782


www.manaraa.com

Benjamin Livshits and Thomas Zimmermann. DynaMine: Finding Common Error Patterns

by Mining Software Revision Histories. In 5th Joint Meeting of the European Software Engi-

neering Conference and the ACM SIGSOFT International Symposium on the Foundations

of Software Engineering, pages 296–305, September 2005. doi:10.1145/1095430.1081754.

Alfred J. Lotka. The Frequency Distribution of Scientific Productivity. Journal of the

Washington Academy of Sciences, 16(12):317–324, June 1926.

Alexander C. MacLean, Landon J. Pratt, Jonathan L. Krein, and Charles D. Knutson.

Threats to Validity in Analysis of Language Fragmentation on SourceForge Data. In 1st

International Workshop on Replication in Empirical Software Engineering Research, page 6,

May 2010.

Steve McConnell. The 10 Most Powerful Ideas in Software Engineering. In Companion

Volume, 31st International Conference on Software Engineering, page 12, May 2009.

doi:10.1109/ICSE-COMPANION.2009.5070958.

Manoel Mendonca and Nancy L. Sunderhaft. Mining Software Engineering Data: A Survey.

Technical report, Data & Analysis Center for Software, November 1999.

Tom Mens and Serge Demeyer. Future Trends in Software Evolution Metrics. In 4th

International Workshop on Principles of Software Evolution, pages 83–86, September 2001.

doi:10.1145/602461.602476.

Tom M. Mitchell. Machine Learning, pages 55–57. McGraw-Hill, 1997. ISBN 0070428077.

Audris Mockus, Stephen G. Eick, Todd L. Graves, and Alan F. Karr. On Measurement and

Analysis of Software Changes. Technical report, National Institute of Statistical Sciences,

1999.

Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two Case Studies of Open Source

Software Development: Apache and Mozilla. ACM Transactions on Software Engineering

and Methodology, 11(3):309–346, July 2002. doi:10.1145/567793.567795.

Audris Mockus, David M. Weiss, and Ping Zhang. Understanding and Predicting Effort

in Software Projects. In 25th International Conference on Software Engineering, pages

274–284, May 2003. doi:10.1109/ICSE.2003.1201207.

Piramanayagam Arumuga Nainar, Ting Chen, Jake Rosin, and Ben Liblit. Statistical Debug-

ging Using Compound Boolean Predicates. In ACM SIGSOFT International Symposium

on Software Testing and Analysis, pages 5–15, July 2007. doi:10.1145/1273463.1273467.

64

http://dx.doi.org/10.1145/1095430.1081754
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5070958
http://dx.doi.org/10.1145/602461.602476
http://dx.doi.org/10.1145/567793.567795
http://dx.doi.org/10.1109/ICSE.2003.1201207
http://dx.doi.org/10.1145/1273463.1273467


www.manaraa.com

Gregory B. Newby, Jane Greenberg, and Paul Jones. Open source software development and

Lotka’s Law: Bibliometric patterns in programming. Journal of the American Society for

Information Science and Technology, 54(2):169–178, January 2003. doi:10.1002/asi.10177.

Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary. O’Reilly and Associates, Inc., 2001. ISBN 0596001088.

Gregorio Robles, Jesus M. González-Barahona, and Rishab A. Ghosh. GlueTheos: Automating

the Retrieval and Analysis of Data from Publicly Available Software Repositories. In

1st International Workshop on Mining Software Repositories, pages 28–31, May 2004.

doi:10.1049/ic:20040471.

Per Runeson, Magnus Alexandersson, and Oskar Nyholm. Detection of Duplicate Defect

Reports Using Natural Language Processing. In 29th International Conference on Software

Engineering, pages 499–510, May 2007. doi:10.1109/ICSE.2007.32.

Marco Scotto, Alberto Sillitti, Giancarlo Succi, and Tullio Vernazza. A non-invasive approach

to product metrics collection. Journal of Systems Architecture, 52(11):668–675, November

2006. doi:10.1016/j.sysarc.2006.06.010.

Claude Elwood Shannon. A Mathematical Theory of Communication. The Bell System

Technical Journal, 27:379–423/623–656, July/October 1948.

Jelber Sayyad Shirabad, Timothy C. Lethbridge, and Stan Matwin. Supporting Software

Maintenance by Mining Software Update Records. In 17th IEEE International Conference

on Software Maintenance, pages 22–31, November 2001. doi:10.1109/ICSM.2001.972708.

Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When Do Changes Induce Fixes?

In 2nd International Workshop on Mining Software Repositories, pages 1–5, May 2005.

doi:10.1145/1083142.1083147.

Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /* iComment: Bugs or Bad

Comments? */. In 21st ACM SIGOPS Symposium on Operating Systems Principles, pages

145–158, October 2007. doi:10.1145/1294261.1294276.

Quinn C. Taylor, James E. Stevenson, Daniel P. Delorey, and Charles D. Knutson. Author

Entropy: A Metric for Characterization of Software Authorship Patterns. In 3rd Inter-

national Workshop on Public Data about Software Development, pages 42–47, September

2008.

65

http://dx.doi.org/10.1002/asi.10177
http://dx.doi.org/10.1049/ic:20040471
http://dx.doi.org/10.1109/ICSE.2007.32
http://dx.doi.org/10.1016/j.sysarc.2006.06.010
http://dx.doi.org/10.1109/ICSM.2001.972708
http://dx.doi.org/10.1145/1083142.1083147
http://dx.doi.org/10.1145/1294261.1294276


www.manaraa.com

Quinn C. Taylor, Christophe Giraud-Carrier, and Charles D. Knutson. Applications of Data

Mining in Software Engineering. International Journal of Data Analysis Techniques and

Strategies, 2(3):243–257, July 2010. doi:10.1504/IJDATS.2010.034058.

Quinn C. Taylor, Jonathan L. Krein, Alexander C. MacLean, and Charles D. Knutson. An

Analysis of Author Contribution Patterns in Eclipse Foundation Project Source Code.

In 7th International Conference on Open Source Systems, pages 269–281, October 2011.

doi:10.1007/978-3-642-24418-6 19.

Lucian Voinea, Alexandru Telea, and Jarke J. van Wijk. CVSscan: Visualization of Code

Evolution. In 2nd ACM Symposium on Software Visualization, pages 47–56, May 2005.

doi:10.1145/1056018.1056025.

Georg von Krogh, Sebastian Spaeth, and Karim R. Lakhani. Community, Joining, and

Specialization in Open Source Software Innovation: A Case Study. Research Policy, 32(7):

1217–1241, July 2003. doi:10.1016/S0048-7333(03)00050-7.

Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. Detecting Object Usage Anoma-

lies. In 6th Joint Meeting of the European Software Engineering Conference and the ACM

SIGSOFT International Symposium on the Foundations of Software Engineering, pages

35–44, September 2007. doi:10.1145/1287624.1287632.

Westley Weimer and George C. Necula. Mining Temporal Specifications for Error Detection.

In 11th International Conference on Tools and Algorithms for the Construction and Analysis

of Systems, pages 461–476, April 2005. doi:10.1007/978-3-540-31980-1 30.

Gerald M. Weinberg. The Psychology of Computer Programming. Van Nostrand Reinhold,

1971. ISBN 0442207646.

Tao Xie. Bibliography on Mining Software Engineering Data. URL http://ase.csc.ncsu.

edu/dmse.

Tao Xie, Jian Pei, and Ahmed E. Hassan. Mining Software Engineering Data. In Companion

Volume, 29th International Conference on Software Engineering, pages 172–173, May 2007.

doi:10.1109/ICSECOMPANION.2007.50.

Shen Zhang, Yongji Wang, Feng Yuan, and Li Ruan. Mining Software Repositories to Under-

stand the Performance of Individual Developers. In 31st International Computer Software

and Applications Conference, pages 625–626, July 2007. doi:10.1109/COMPSAC.2007.148.

66

http://dx.doi.org/10.1504/IJDATS.2010.034058
http://dx.doi.org/10.1007/978-3-642-24418-6_19
http://dx.doi.org/10.1145/1056018.1056025
http://dx.doi.org/10.1016/S0048-7333(03)00050-7
http://dx.doi.org/10.1145/1287624.1287632
http://dx.doi.org/10.1007/978-3-540-31980-1_30
http://ase.csc.ncsu.edu/dmse
http://ase.csc.ncsu.edu/dmse
http://dx.doi.org/10.1109/ICSECOMPANION.2007.50
http://dx.doi.org/10.1109/COMPSAC.2007.148


www.manaraa.com

Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas Zeller. Mining Version

Histories to Guide Software Changes. IEEE Transactions on Software Engineering, 31(6):

429–445, June 2005. doi:10.1109/TSE.2005.72.

67

http://dx.doi.org/10.1109/TSE.2005.72

	Analysis and Characterization of Author Contribution Patterns in Open Source Software Development
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Contents
	List of Figures
	1 Introduction
	2 Applications of Data Mining in Software Engineering
	2.1 Introduction
	2.2 Related Work
	2.3 Software Engineering Data
	2.4 Mining Software Engineering Data: A Brief Survey
	2.4.1 Data Mining Techniques in Software Engineering
	2.4.1.1 Association Rules and Frequent Patterns
	2.4.1.2 Classification
	2.4.1.3 Clustering
	2.4.1.4 Text Mining

	2.4.2 Software Engineering Tasks That Benefit From Data Mining
	2.4.2.1 Development Tasks
	2.4.2.2 Management Tasks
	2.4.2.3 Research Tasks


	2.5 Mining Software Engineering Data: The Road from Here
	2.5.1 Targeting Software Tasks Intelligently
	2.5.2 Lowering the Barrier of Entry
	2.5.3 A Word of Caution

	2.6 Summary

	3 Author Entropy: A Metric for Characterization of Software Authorship Patterns
	3.1 Introduction
	3.2 Author Entropy
	3.2.1 Definitions of Entropy
	3.2.2 Calculating Entropy
	3.2.2.1 The Special Case: Binary Classification
	3.2.2.2 The General Case: Any Number of Groups
	3.2.2.3 Entropy Applied to Text Authorship

	3.2.3 Interpretation of Entropy in Software

	3.3 Proof of Concept Study
	3.3.1 Extraction and Calculation
	3.3.2 Project Selection
	3.3.3 Threats to Validity
	3.3.4 Results
	3.3.4.1 Degree of Collaboration Within Files
	3.3.4.2 Entropy Patterns Within Files
	3.3.4.3 Entropy Distributions Within Projects
	3.3.4.4 Entropy Distributions Across Projects

	3.3.5 Summary

	3.4 Related Work
	3.5 Future Work
	3.5.1 Empirical Evaluation of Applicability
	3.5.2 Aggregating Entropy for Groups of Files
	3.5.3 Normalizing Author Entropy
	3.5.4 Parallels with Social Network Studies

	3.6 Summary

	4 An Analysis of Author Contribution Patterns in Eclipse Foundation Project Source Code
	4.1 Introduction
	4.2 Methodology
	4.2.1 Project and File Selection
	4.2.2 Extraction and Calculation
	4.2.3 Limitations of the Data

	4.3 Author Entropy
	4.3.1 Calculating Entropy
	4.3.2 Normalizing Entropy

	4.4 Interpreting Collaboration
	4.5 Results
	4.5.1 Additional Questions

	4.6 Future Work
	4.7 Conclusion

	References

